Tag Archives: Sweden

Saab 340 AEWC

sweden flag Sweden (1997)
 Airborne Early Warning & Control (AEWC) Aircraft- 12 Built

The Saab 340B AEW&C and the Saab 2000 AEW&C are airborne early warning and control (AEW&C) airplanes that were developed from the basic Saab 340B airplane, a twin-engine turboprop regional airliner developed and built in partnership with the now defunct American aircraft manufacturer Fairchild Aircraft .  The model was named “Metro III” when manufactured by Fairchild Aircraft. The Saab 2000 AEW&C is based upon the Saab 2000 airliner,it being a variant of the basic Saab 340B model. These airborne radar models came from the inventiveness of the Flygvapnet, as the idea of fitting the basic transport model already in service emerged considering the gaps the Flygvapnet had regarding the type of air asset. This paid off as the Nordic nation is now equipped with an airborne and air control (flying) system that provides a very valuable tool for the Flygvapnet to monitor the Swedish skies and even abroad, as the post-Cold War era meant new missions beyond national defence for the Swedish Armed Forces in general. The basic 340B  version was, despite its initial non-military use, a display of technological advancement with advanced avionics and a product of the company’s desire to revive its interests in the civil market after the not entirely successful Saab Scandia 90, in the 50’s.

The Saab 340B AEW&C (Saab 340B) is a twin-engine turboprop medium size airliner, capable of carrying more than 30 passengers and with a conventional design, mainly for short-range regional flights. The main airframe is cylindrical, with the wings placed near the middle section of the airplane and of trapezoid and thin configuration. The nose is not rounded being rather sloped downwards, and the wings and horizontal control surfaces being angled upwards. The engines are not beneath the wings, as the configuration is that of a low-wing airplane; instead, they are placed above the wings and logically enrooted in them. The Saab 2000 differs from the basic model in the sense that it is larger, wider, slightly taller and with more wing area.

The Saab 340B AEW&C is powered by two General Electric CT7-9B turboprops of 1870 hp with a Dowty Rotol (or Hamilton Standard) 14RF19 four-blade constant speed propeller each, allowing the airplane to reach a cruise speed of 522 km/h (325 mph). The Saab 2000 AEW&C also has a different powerplant, being 2 Allison/Rolls Royce AE 2100A turboprop engines of 4,591 hp with a Dwoty Rotol six-bladed constant speed propellers each, having improved performance than the 340B version: for instance, the cruise speed it can reach is up to 629,68 km/h (391,26 mph).

Given the role of the airframes, both are fitted with an Ericsson Erieye (PS-890) radar installed above the main airframe, with a range of S-band, 3 GHz (GigaHertz) with a range of 160 degrees on each side. The radar is a rectangular pod, in contrast with the radars one would see on more classical AEW&C planes (for example the Boeing E-3 Sentry or the Ilyushin A-50). The radar has a range of 300-400 km capable of detecting sea and airborne targets.

History

The A 340B AEW&C (S 100B Argus) came to be with the idea of having a Swedish modified AEW&C asset and an alternative to the comparatively more expensive Boeing E-3 AWACS. The Flygvapnet was already operating with a Saab 340B for VIP transport, designated TP 100A, and that same airframe was to be the basis for the new airborne defence and air control radar. By the mid-90s, the first unit entered in service with the Flygvapnet. A total of six airframes were ordered: four with the radar already installed and two without the radar, prepared to have it installed when needed and serving as VIP transports during peacetime. As mentioned above, the Saab 340B AEW&C (S 100B Argus) is based upon the commercial airliner Saab 340B, which is a good platform given its structural characteristics, avionics, and performance. This airframe began its development in the 70s, with the propulsion system that it has being chosen as it was more economic than the jet propulsion system back then. It is reported that cost/efficiency considerations and the effects of the 1973 Oil Crisis made the company to pick the turboprop propulsion system. The US Airline Deregulation Act of 1978 gave further impulse for the basic model to be developed. This airplane was developed and built jointly with Fairchild Aircraft, mainly due to the fact that Saab thought the production capacity would not be enough. As a result, from 1980 to 1987, Fairchild was tasked with manufacturing the wings, the tail, and the engine nacelles. Saab, in turn, was tasked with manufacturing the main airframe, covering the 75% of development costs and the system integration and certification. The first Saab 340 flew in 1983, with the first airplane serving with an airline in 1984. After Fairchild ceased operations, Saab began to fully manufacture the Saab 340, doing so until 1999. The Saab 2000 came to be due to a decision in 1988 by Saab to develop an elongated version of the Saab 340 capable of carrying up to 50 passengers, having the same economic efficiency along with better climbing performance. Its first flight was in 1992, entering into service in 1994.

Currently, the S 340B AEW&C (S 100B Argus) operates in the Flygvapnet with 4 units sporting radar equipment and two additional units serving as VIP transports, ready to have the radars installed when needed. Its production was also finished in 1999, with 12 AEW&C units built: six for the Flygvapnet, 2 for the Royal Thai Air Force and 2 for the Pakistan Air Force, with 2 more under production for the United Arab Emirates Air Force. 2 modified airframes were loaned for the Hellenic Air Force from 2000 to 2003, while Greece received two Embraer RJ-145 AEW&C aircrafts fitted with the same Ericsson Erieye radars. It is noteworthy to state that of the basic airliner version, 460 units were built. Of the Saab 2000 airliner version, 63 were built; in turn, the Saab 2000 AEW&C version was introduced in 2010 for the Pakistan Air Force, with 8 units built so far and operating with the Pakistan Air Force, the Royal Saudi Air Force and the United Arab Emirates Air Force. Three more units would be delivered for the Pakistani Air Force.

Design

The Saab 340B AEW&C design is based on the Saab 340B commercial airliner, while the Saab 2000 AEW&C is based on the Saab 2000 commercial airliner. As such, the airframe is the basically the same except that the former has the radar placed above the airframe, and other electronic equipment installed in the airplane. The airplane is of a dihedral wing design, which  means the wings are placed at the base of the airframe and angled upwards. It had two turboprop engines and an airframe built entirely of aluminium with the same construction techniques other Saab military fighters had: usage of bonding instead of rivets, reducing the overall weight of the airplane. It also has wider horizontal stabilizers, a vibration control system in the cabin to reduce the noise from the engines, and more powerful engines (the two General Electric CT7-9B turboprops of 1870 hp).

The wing and the horizontal control surfaces or stabilizers are dihedral, with the angle of the former being more prominent than the angle of the main wings. Both the wings and the horizontal stabilizers are both of trapezoid shape, being very thin – or simply not having that much of surface area. The engines are located at a quarter of the main wings, close to the main airframe. The main wings are located at the middle of the airframe, with the airframe being of tubular shape. The bow section of the airframe has a shape that varies according from the view or perspective. From an upper view, it has a parabolic nose cone; from a side view the shape is divided, with the area between the very roof and the windscreen having and inclination of around 38 degrees negative, and from the lower section of the windscreen to the tip of the nose, an angle of 30 degrees negative. The tip of the nose from a side view is placed at the lower section of the airframe, with the interior bow section from where the frontal landing gear is placed, to the tip, having an angle upwards of 10 degrees. The central section of the airplane is of cylindrical shape.

The aft or stern section of the airplane comprises the horizontal and vertical control surfaces, and two ventral tails fins. The tail is of conventional type with a sort of “double-delta” configuration; this is, the surface having at the forward area different angles. The forward section of the tail, from the central area of the airframe to the area where the horizontal control surfaces are placed, has an angle of nearly 15 degrees. From the aforementioned section to the tip of the tail the angle is of 45 degrees. From an upper view, the rear section is of conical shape, whereas from a side view the upper area of the aft section is lightly going downwards, and the interior part has an upwards angle of around 15 degrees. The ventral fins are placed right beneath the horizontal control surfaces. The rudder dominates half of the tail. And there is an elongating radome at the very rear part of the aircraft. The landing gear is of tricycle configuration, with the frontal landing gear placed at the nose cone (beneath the cockpit) and the two landing gear trains placed beneath the engine gondolas, them being retractable with storage inside the engine gondolas.

The Saab 2000 AEW&C has a similar structure to that of the 340, except that it is more elongated in width and length, the inferior section of the nose being entirely straight and the engines having more distance from the main fuselage. It also lacks the ventral tail fins the Saab 340B AEW&C (S 100B Argus) has.

The engines powering the aircraft are two General Electric CT7-9B turboprops of 1870 hp with a Dowty Rotol (or Hamilton Standard) 14RF19 four-blade constant speed propeller. Thanks to the powerplant, the airplane can reach a maximum cruising speed of 524 km/h (325,60 mph). The aircraft is fitted with devices to reduce the noise generated by the engines. The Saab 2000 AEW&C is powered by two 2 Allison/Rolls Royce AE 2100A turboprop engines of 4,591 hp with a Dwoty Rotol six-bladed constant speed propellers each, allowing a cruise speed of 629,68 km/h (391,26 mph).

The AEW&C version has the Ericsson Erieye radar placed above the central section of the airframe, supported by a series of pillars that connects it to the main airframe and with a slight inclination downwards from stern to bow. Ventral antennas are installed at the inferior area of the fuselage.

The canopy is of conventional type, typical of any commercial or transport aircraft, with two frontal windscreens, and a lateral windscreen at each side of the cockpit. The crew on the Saab 340 AEW&C (S 100B Argus) is normally six.

Fitting a civilian for defence duties

Perhaps surprisingly, the Flygvapnet lacked an airborne AEW&C system during the late Cold War, relying instead on either smaller airborne assets for surveillance or land radar stations. The Flygvapnet decided to close this gap by ordering Ericsson Microwave Systems to develop the PS-890 Erieye radar by the late 80s, with the airframe that would be used undergoing the first trials by the same period. This idea was, in fact, proposed back in the 70s but rejected. It was revived again in the Swedish Parliament (Riksdag) in 1982. As the Boeing E-3 Sentry AWACS was deemed too expensive, it is no surprise that the Saab 340 airliner was chosen by the Swedish Defence Materiel Administration as the platform for the airborne radar system. the Flygvapnet was already operating with a Saab 340B which was being operated as a VIP transport. In any case, it was a very good decision, considering the Saab 340B is a very economic airplane thanks to its powerplant’s configuration and the advanced basis avionics and electronics, which was hence an economic alternative to the E-3 Sentry. In combination with the Erieye radar, it makes a suitable platform for an airborne radar for Sweden. The Saab 2000 is an example of how this concept has evolved by incorporating the Erieye into an equally economical yet very capable airframe, which a derivative from the basic model.

The Eye of Odin

The radar installed in the Saab 340B AEW&C (S 100B Argus) is the Ericsson Microwave System Erieye PS-890 multi-mode active electronically scanned array (AESA) pulse-doppler radar, which makes the airplane a very remarkable AEW&C aircraft, considering its capacities. Its development began in 1985 after the Swedish Defence Materiel Administration, with a dummy dual-sided phased antenna being tested on the future platform, which was tested in trial two years later. It has 200 solid-state modules mounted in the antenna, with an S-band frequency and 3 GHz, with a ‘look’ on each side of 120 degrees and a reach of up to 300-400 km at an altitude of 6096 meters (20,000 ft). It has an altitude reach of up to 20 km (65,000 ft), yet leaves the nose and tail areas as blind spots. This shortcoming is compensated by the fact the radar – with this design in particular – can provide improved detection and better tracking thanks to the electronically scanned beam, at the point of being able to scan other areas while concentrating on a single target. Moreover, the PS-890 Erieye can detect and track fighters, helicopters, cruise missiles and even very small targets at the sea, as it has also a sea surveillance mode. Moreover, sectors deemed important can be scanned with different modes at a single moment, being capable of performing in electronically saturated environments and as an all-weather device, and can discern between friend and foes through its IFF capacities and devices.

This is suitable for the Flygvapnet considering that the dimensions it has to watch for are the air and the sea (even more as the Baltic sea is the most important body of water at the East, an area from which most of the threats have come historically, and even currently). As such, it can perform air and sea surveillance missions, Command and Control, Intelligence, control of own assets, surveillance and control of national borders, national assets and national economic zones, search and rescue, alert warning and air policing. The system is compatible with NATO airborne systems and standards.

The Erieye PS-890 radar has other electronic features, such as adaptive waveform generation with digital; pulse-coded electronic frames; signal processing and targeting, a track while scan device; low and medium pulse repetition frequency operating modes; frequency agility; target radar-cross section display; and air-to-air and sea surveillance modes.

Interestingly and despite the system being capable of receiving four multifunction workstations for airborne controllers, it can spare them as it has instead an onboard automatic systems datalink that can transmit to ground station the information gathered by the airborne radar, and with those same stations being capable of transmitting orders to the platform. The airplane and radar are both connected to the integrated Swedish Air Defence System and network StriC-90, thanks to this network, the airplane can maximize its operational performance, complementing in turn and even enhancing the capabilities of such system; this fact makes the Saab 340B AEW&C (S 100B Argus) airplanes very valuable assets in the Flygvapnet. And the same design of the radar module was the first of its kind, being also an alternative to the disc-shaped classical airborne radars. The radar developed by Ericsson is fitted in other similar airborne platforms such as the Embraer EMB-145/E-99 and the Bombardier Global 6000. It has now evolved into the Global Erieye airborne radar.

Variants of the Saab 340 AEW&C (S 100B Argus)

  • Saab 340 AEW&C / S 100B Argus – Airplanes having the PS-890/FSR-890 radar, and operated by the Royal Thai Air Force.
  • Saab 340B AEW&C 200 – Version fitted with the IS-340 Erieye radar
  • Saab 340B AEW&C 300 / S 100D Argus – Airplanes fitted with the upgraded PS-890/ASC-890 radar, capable of admitting from 1 to 4 operators.

Variants of the Saab 2000 AEW&C

  • Saab 2000 Erieye AEW&C – Version fitted with an airborne Erieye radar
  • Saab 200 MPA (Maritime Patrol Aircraft) – Version for Maritime Patrol and capable of performing ASW, ASuW, anti-piracy/anti-narcotics/anti-people smuggling, maritime counter-terrorism operations, search and rescue, support for special forces, SIGINT, and fisheries patrol, among other sea-based security tasks.

Operators

  • Sweden – The Flygvapnet operates four Saab 340 AEW&C (S 100B Argus) fitted with the Erieye radar, alongside 2 additional airframes serving as transport planes, ready to have the radar installed in case it is needed. The first airframes were received in 1994, entering fully in service between 1997 and 1999, and serving in the F16M wing at Malmstatt. Normally, there are no operators onboard, being rather used as a part of the integrated air defence network.
  • Greece – The Hellenic Air Force decided to acquire the Erieye radar system with 4 units to be installed in Embraer RJ-145 airplanes. While waiting for the newly acquired system to arrive, 2 Saab 340B AEW&C airplanes were loaned by the Greeks in the year 2000. The loaned units were modified, having two to three operator consoles, NATO IFF, communications and datalinks having a ground bases system for information processing fitted for Greek standards, but lacking the Swedish ECCM and also the cockpit display processing information from ground stations. These airplanes were returned to the Flygvapnet by 2003.
  • Thailand – The Royal Thai Air Force has two Saab 340 AEW&C that received in October 2012.
  • United Arab Emirates – The United Arab Emirates Air force requested 2 airplanes, with the units delivered being Saab 2000 AEW&C. Now operational.
  • Saudi Arabia – The Royal Saudi Air Force reportedly operates two Saab 2000 AEW&C for border surveillance.
  • Pakistan – This country operates four Saab 2000 AEW&C airplanes. 2 more are reportedly on order.

 

Saab 340 AEW&C – S 100 B Argus Specifications

Wingspan 70 ft 4 in / 21.44 m
Length 66 ft 8 in / 20.33 m
Height 22 ft 11 in / 6.97 m
Wing Area 450 ft² / 41.81 m²
Engine Two General Electric CT7-9B turboprops of 1870 hp with a Dowty Rotol (or Hamilton Standard) 14RF19 four-blade constant speed propeller.
Empty Weight 22,707 lb / 10,300 kg
Maximum Takeoff Weight 29,101 lb / 13,200 kg
Loaded Weight 7,500 lb / 3,401 kg
Climb Rate 2,000 ft / 10,2 m/s
Maximum Speed 285 mph / 528 kmh
Cruising Speed 285 mph / 528 kmh
Range 900.988 mi / 1,450 km
Maximum Service Ceiling 25,000 ft / 7,620 m
Crew 6
Electronics
  • An Ericsson Erieye (PS-890) radar.
  • Länk 16, HQII, IFF, secure voice, m.m.

 

Saab 2000 AEW&C Specifications

Wingspan 81 ft 3 in / 24.76 m
Length 89 ft 6 in / 27.28 m
Height 25 ft 4 in / 7.73 m
Wing Area 600 ft² / 55.7 m²
Engine Two Allison/Rolls Royce AE 2100A turboprops of 4152 hp with a Dowty Rotol six-blade constant speed propeller.
Empty Weight 30,424 lb / 10,800 kg
Maximum Takeoff Weight 50,625 lb / 22,800 kg
Loaded Weight 13,010 lb / 5,900 kg
Climb Rate 2,250 ft / 11,4 m/s
Maximum Speed 391,26 mph / 929,68 kmh
Cruising Speed 391,26 mph / 929,68 kmh
Range 2,301.55 mi / 3,704 km
Maximum Service Ceiling 30,000 ft / 9,144 m
Crew 7
Electronics
  • An Ericsson Erieye (PS-890) radar.
  • Länk 16, Self-protection systems, IFF/SSR, secure voice, ESM/ELINT, AIS; Command and Control devices such as consoles and a latest generation HMI.

Gallery

Saab 340 AEW Blueprint

 

 

Sources

Deagel.com. (2017). Saab 2000 AEW&C., Forecast International. (2000). Saab 2000 (Archived Report)., Fredriksson, U. (2004). Saab 340AEW. X-plane.org., Pike, J. (1999). S 100B Argus, Saab 340 AEW&C. FAS.org., SAAB. (n.d.). SAAB 2000 Erieye AEW&C Airborne Early Warning & Control., SAAB. (2009). SAAB 340B/Bplus. SAAB Aircraft Leasing. SAAB. (2013a). Erieye AEW&C Mission System., SAAB. (2013b). SAAB Airborne Surveillance Solutions. SAAB. (2015). High Quality and Support in Focus – Saab 340 & SAAB 2000., SAAB. (2016). The First Airborne Radar in Sweden Underwent Final Testing 20 Years Ago., SAAB. (n.d.). Erieye SAAB 2000 AEW&C System. The Spyflight Website. (2003). SAAB S100B AEW&C Argus. Images: 340AEW Royal Thai Airforce by Alec Wilson / CC BY-SA 2.0, 340AEW by Gnolam / CC BY-SA 3.0,  Side Profile Views by Ed Jackson – Artbyedo.com

Saab sk60A - F 5 Ljungbyhed - 60113 Side Profile View

Saab 105

sweden flag Sweden (1967)
Trainer – 192 Built

The Saab 105 is a high-wing, twin side-by-side seat configuration, two engine-powered training and multi-mission jet, with swept-wings. This airplane (later denominated as Sk 60 by the Swedish Flygvapnet) was the product of a private venture by the company, which and after witnessing the success of the S 35 Draken, decided to implement a program with its own funds to develop a new training plane, with military purposes and eventually, civil purposes. The Saab 105 is, in fact, a multi-mission aircraft, in lieu with the operational framework Saab and Sweden normally contemplates for its aircraft. For instance, it can perform missions of training, liaison, ground attack, reconnaissance and limited interception. In regards to civilian use, the small jet was intended to be a four or five-seat business jet, but this plan met no success, making the Saab 105 a military machine and the company to aim at the military market (until the arrival of the Saab 340 and the Saab 2000, the company would not venture into the civil market, although Saab ventured into this market in the Saab 90 Scandia in the 40’s and 50’s). It replaced the de Havilland Vampires that served in the Flygvapnet as training jets.

Saab sk60A - 60140

Noteworthy to point out that this aircraft was a milestone for European aerospace industry, for it was the only small European design in being powered by turbofan engines, increasing the prospects of customers – yet the foreign sales were rather modest, with Austria being the only country in exporting the jet. Nevertheless, it managed to have the attention of the Flygvapnet, placing an order for at least 100 units of the jet, and even sponsoring further development of the jet on an initial training version.

Development

The development programme started in 1961, with the prototype having its first flight in 1963, where the airplane revealed to have very good handling qualities and good manoeuvrability, capable of performing acrobatic manoeuvres. The original powerplant, the Turbomeca Aubisque was tested at the engine’s factory in France with one prototype delivered there solely for that purpose, being later on produced by Volvo under license as the RM9. The powerplant would be updated as time went by, with the Swedish-operated Sk 60 receiving a Williams International FJ44 engine (manufactured by Volvo as the RM15 and fitted with Auxiliary Power Reserves), mainly due to the Aubisque Engines reaching the end of their operational life, and tight defence budgets.

sk60a-trainer-display
In 1966, the Saab 105 entered in service with the Flygvapnet following the Swedish government authorization to incorporate 130 aircraft, with three main variants having specific missions each: the Sk 60A for training and liaison with a four-seat configuration; the Sk 60B for light attack mission with the cockpit having a twin side-by-side seat configuration; and the Sk 60C with ground attack and reconnaissance missions, equipped with cameras at the nose. There was an improved version to be exported to Austria (the Saab 105Ö/ÖE), with better powerplant – a General Electric J85 – and improved avionics, as well as reinforced wings and optimized for high-altitude operations.
The Saab 105 is a four-seat or twin side-by-side seat multi-mission aircraft, having two engines, high-wing, a tail on a T shape and the tail being very wide. The wings are swept-wings, with the cockpit placed very bow of the aircraft and right before the wings, with the engine air intakes placed beneath them and at the forward edge. The canopy is if of bubble type, although it has no free rear vision, as the canopy does not stand above the fuselage. The engine has been updated from time to time, as well as the avionics, with the Austrian version being the version receiving the most important updates. In addition, the Saab 105 is capable of carrying a varied array of armament, such as 135, 127 or 75 mm rockets, Saab Rb05 ASM missiles, bombs and cluster bombs, and 30 mm or 12,7mm (training) guns at gun pods for ground attack missions. Cannons and AIM-9 Sidewinder/ Rb24 missiles can be used for the limited air defence and interception role, and cameras and radiation detecting equipment for atmospheric sampling in reconnaissance missions.

Service

As the Saab 105 entered in service with the Flygvapnet and the Österreichische Luftstreitkräfte in 1966 and 1970, respectively, with 150 units in Sweden and 40 units in Austria, making a total of 190 units (including the prototypes), where they are still in service with both air forces. Thanks to its manoeuvrability, the Saab 105/Sk 60 was used in acrobatic teams at both nations: in Sweden, it is used by the display team Team 60 of the Flygvapnet, whereas in Austria it was used by two Österreichische Luftstreitkräfte teams, Karo As and the Silver Birds. A replacement for the Saab 105/Sk 60 is now being considered, as it has been in service for 40 years, while one of the prototypes is now a museum display since 1992. Nevertheless, an agreement between Saab and the Swedish Armed forces was reached in 2015 in order to support and keep the Sk 60 airworthy until 2020.

Design

The design of the Saab 105/Sk 60 is conventional, although it has some remarkable characteristics that makes this jet to be very different from other airplanes of similar type. The airplane is mate entirely of metal. For instance, the nose is relatively small from longitudinal perspective, yet being wide enough to accommodate the frontal wheel of the landing undercarriage. On the reconnaissance version, its size is increased in order to accommodate the camera equipment and other instruments. The canopy and cockpit are also unique – similar to the Bae 167 Strikemaster and the Hunting (Percival) P.84 Jet Provost in shape – with a ‘bubble’ configuration where two or four crew can accommodate, although it is normal to have a crew of two in training missions. The seat configuration was a twin or side-by-side seating, and in some versions, 4 seats were accommodated in the cockpit.

Noteworthy to remark, the canopy takes more than the half of the height at the bow. Right after the cockpit and canopy the radio antenna is installed above the fuselage, in the same area where the engine air intakes and the wing both start. The wing is a high swept-wing, although is not perfectly strait, as it has a depression angle from the base to the wingtip. Furthermore, the leading edge is swept, while the area of the ailerons and flaps is slightly swept. The wing accommodates six hardpoints (three on each wing) that allows the airplane to carry a varied array of weaponry and depending of the mission it was tasked with.
The engines – the Saab 105 was normally powered by two engines: a couple of Turbomeca Aubisque Turbofan, a couple of Williams FJ44, or a couple of General Electric J85 engines – were placed at the sides of the fuselage, and occupying the whole central section of the jet. The exhausts were placed right before the tail group began, hence the T shape of the tail, with the horizontal stabilizer and elevators placed on top of the vertical stabilizer. The vertical stabilizer in turn, is having a considerable area, giving the tail its characteristic ‘big’ shape, with the rudder having a similar ample area, equal to the Canadair CL-41G-5 Tebuan. Each side of the tail is having a trapezoid shape.

saab-sk60a-in-flight-2

The landing gear is of tricycle configuration, with the frontal wheel located at the nose, and the rear wheels placed at the central area of the fuselage, right beneath the wing and the engines, being retractable.

In regards to the armament, it was normally varied, depending of what were the mission to accomplish. The initial configuration of training and liaison would be unarmed (except for the 12,7mm training guns), yet for its secondary ground attack roles it would be armed with 30 mm or 12,7mm (training guns) guns installed at pods, fitted in the wings, unguided rockets – of 135, 127 or 75 mm –, bombs – either free fall or cluster bombs – and two Saab Rb05 air-to-ground missiles. As it is capable of limited air defence and interception, it can carry the 30mm or 7,62mm guns at the pods and AIM-9 sidewinder/RB 24 air-to-air missiles. Cameras and radiation detecting equipment for atmospheric air samples were the normal equipment for reconnaissance missions. Noteworthy to remark that additional fuel tanks were never intended for use, therefore the wings never carried such equipment. A publicly known Sk60 received important updates in avionics and navigation systems in 2013, constituting itself a new version (Sk 60AU).

A Private Venture

The Saab 105/Sk 60 as the idea of developing a small high-speed business jet featuring a delta wing and cannards with 5 seats, but also due to the success of the Draken and the need for developing a trainer that could train the Flygvapnet pilots for the J 35, moreover when the de Havilland Vampires were not suitable for the task. This realization, along with the fact that the proposed business jet found no fertile ground for success, made of the new Saab 105 to be more a military plane, although some of the 150 built jets were used as liaison and VIP transports. At the same time, the Flygvapnet was requiring new training aircraft, selecting the Saab 105 above other – good – options, such as the Fouga Magister or the Macchi MB.326, to name a few. As a result, the Saab entered in service with the Air Force sponsoring further its development. Some year after in entered in service, Saab engaged in a campaign to export the Sk 60 to other nations – mainly those that were neutral during the cold War, curiously – such as Finland, Switzerland and Austria. Only the last one bought 40 Sk 60, which were enhanced versions of the original model and fitted for Austrian service.

A Small but Versatile Jet

The Saab 105 might look a modest, uninteresting aircraft at first sight, but like all Saab models, it is a very capable jet with very good flying characteristic, being its manoeuvrability the most remarkable one. It was also deemed to be easy to fly, It is also a multi-mission airplane, capable of adapting to different missions. For instance, it can perform training and liaison missions in principle, but it is also capable of executing ground attack, reconnaissance and atmospheric air sampling, and even limited air defence and interception (especially the Austrian units). It has been in service with both the Swedish and Austrian air forces for about 46-50 years, being among the airframes serving for a long period of time with any air force. As a result of its manoeuvrability, it was used by acrobatic teams in both Sweden and Austria.

Variants of the Saab 105/Sk 60

  • Saab 105 – The prototypes of the trainer and liaison airplane. Two prototypes built
  • Sk 60A – The first production series, configured as two-seat trainer and liaison jet, with 149 units built.
  • Sk 60B – The second version configured for ground attack missions and made from modified Sk 60A airframes, incorporating armament.
  • Sk 60C – The third version, configured for ground attack and reconnaissance mission, fitted with a camera (a Fairchild KB-18 panoramic fil camera) that elongated the nose, since it was installed there. A prototype and 29 converted airframes from the Sk 60A comprised the quantity of this version.
  • Sk 60D – Saab reportedly configured the Saab 105 as a four-seat liaison transport, with the combat seats replaced by four airliner-type seat lacking use of parachute, or even four seats of the same type that would allow the use of parachutes by the crew. 10 Sk 60A airframes were modified to give way to this version in the mid-70’s, receiving the same ‘splinter camouflage’ painting applied to the Saab S 37 Viggen
  • Sk 60E – Similar to the Sk 60D version, only that it was fitted with airliner-type instruments, including an instrument landing system. It trained Flygvapen reserve pilots in flying commercial aircraft, used later on as Sk 60D transports.
  • Sk 60W – Intended programme in 1993 to upgrade the Sk 60, were a new powerplant (Williams Rolls FJ44 turbofan engines) and digital engine control were to be installed, as well as LCD altitude indicators. Implemented in 1995, the Sk 60 powered by these engines were denominated informally as Sk 60W. 115 Sk 60A, Sk 60B and Sk 60C were upgraded, while the Sk 60D and Sk 60E were grounded and used for part cannibalization.
  • Sk 60AU – A new version of the trainer, being a modification of an existing airplane, it incorporated new avionics and instruments. Among the upgrades incorporated, there is a GPS, new radio, new audio warning systems, new navigation systems and information on a similar manner as in the JAS 39. Introduced in 2013 with a single unit modified publicly known at F 17 Ronneby.
  • Saab 105XT – An improved Sk 60B powered with a General Electric J85 Turbojet engines made from the second Saab 105 prototype, purposed to be an export demonstrator. The engines, noteworthy to point out, yielded speed of up to 970 km/h, making it a subsonic aircraft.
  • Saab 105D – A proposed refined business jet version, but it was cancelled as there were no takes and the idea was out of time.
  • Saab 105G – A revised version of the Saab 105XT that featured new avionics, such as a precision navigation and attack system, enhanced J85 engines and modified wings, with only one units from a modified Saab 105XT
  • Saab 105H – Proposed training version for the Swiss Air Force. As this air force rejected the project, none were built.
  • Saab 105Ö (105ÖE) – An export version made for Austria and based on the Saab 105XT, entering in service with the Österreichische Luftstreitkräfte in 1970 and 1972, replacing the de Havilland Vampires and Saab J 29 Tunnan this air force was operating with back then. Powered by the General Electric J85 engines
  • Saab 105S – A proposed trainer demonstrator for the Finish Air Force, as it was requiring a trainer in the mid-70’s. Finland decided instead to purchase Bae Hawk trainers.

Operators

  • Sweden
    The Flygvapnet operated the Saab 105 under the denomination of Sk (Skola) 60(A). 150 units served with the Swedish Air Force in 1966 and for unarmed training missions. They began to operate at F 5 Ljungbyhed and the F 16 Uppsala flying schools. At the earlier 70’s the Sk 60A were modified with the installation of hardpoints at each wing, allowing them to operate also as light attackers. 46 units were modified and denominated Sk 60B. At the same time, 30 Sk 60A were modified into the Sk 60C, allowing cannons pods and rockets, as well as the installation of a panoramic reconnaissance camera, serving in the abovementioned wings as well as in the F 21 Luleå, where a light attack squadron was stationed. In 1988-1991 and 1993 the Sk 60s suffered upgrades, mainly at the wing – which were reinforced – and the pilots’ ejection seats, as well as receiving new powerplants. The Sk 60D/E were kept out of any modernization programmes, used instead for cannibalization (or to use the aircraft as sources for spare parts). A single unit so far has been modified with new instruments and GPS devices in 2013 at F 17 wing Ronneby, constituting the Sk 60AU. Similarly, the builder and the air force reached an agreement in 2015 to keep the trainer airworthy and with any maintenance support for this purpose, until 2020.
  • Austria
    Operated 40 Saab 105Ö/ÖE were purchased, with 28 currently remaining. The Österreichische Luftstreitkräfte operates this aircraft mainly for training purposes, but also for other mission such as ground attack, reconnaissance (including radioactivity measurement), VIP transport and limited air defence and interception missions. The Austrian Saab 105 were noticeably operated when US president George Bush visited Austria, performing air patrols under the policy of air guard when a personality or important summits are taking place. It is still deemed a good tool for fighter training by the Austrian Air Force.

Saab 105 Specifications

Wingspan  9,5 m / 31 ft 2 in
Length  10,5 m / 34 ft 5,83 in
Height  2,7 m / 8 ft 9 in
Wing Area  16,3 m² / 175,5 ft²
Engine  2 x Turbomeca Aubisque (Volvo Flygmotor RM9), or 2 x General Electric J85-17B Turbojet, or 2 x Williams FJ44 (Volvo Flygmotor RM15)
Maximum Take-Off Weight
Empty Weight  2510 kg / 5,533 lb
Loaded Weight  2835 kg / 6,240 lb
Maximum Load  800 kg / 1,763 lb
Climb Rate  75m/s (Saab 105Ö/ÖE)
Maximum Speed  770 km/h / 360 mph at 6095 m (19,996 ft)
Range  1400 Km / 790 miles
Maximum Service Ceiling  13500 m /44,291 ft
Crew  2 (instructor pilot and student pilot) or 4 in case of liason/VIP transport mission (Sk 60D/E)
Armament
  • 6 harpoints allowing up to 700kg (1,543 lb) of payload: 2 x Saab Rb05 ASM missiles
  • 2 x AIM-9 Sidewinder/Rb24 AAM missiles
  • Pods for 30 mm or 12,7 mm cannons
  • 12 X 135mm, 127mm or 75mm rockets
  • 250kg (550lb) bombs, cluster bombs and rocket launcher pads.
  • The reconnaissance version was equipped with a Fairchild KB-18 panoramic camera at the nose, as well as radioactive air measurement instruments.

 

Gallery

Saab sk60A - F 5 Ljungbyhed - 60113 Side Profile View
Saab sk60A – F 5 Ljungbyhed – 60113
Saab sk60A - F 5 Ljungbyhed - 60140 Side Profile View
Saab sk60A – F 5 Ljungbyhed – 60140
Saab sk60A - 60088
Saab sk60A – 60088

sk60a-trainer-display

saab-sk60a-in-flight-2

Saab sk60A - 60140

 



Sources

Airheadsfly.com. (2013). Upgraded SK60 Operational. Airheadsfly.com.Charleville, J. (1996)., Nya SK 60: Inte W men A, B, C., FlygvapenNytt (4), 25.Das, W., & Otten, K. (n.d.). Saab 105 in Austrian Air Force. Dutch Aviation Support.Flygrevin. (2012). SAAB Sk-60 – flygande skolbänk. Flygrevyn (2), 2-6.Fredriksson, U. (2001). Saab 105 in Swedish service. X-plane.org.Försvarsmakten. (2013). F17 har fått en ny versionen av SK 60. Försvarsmakten.Globalsecurity.org. (2012). Sk60 / Saab 105 trainer/light attack aircraft. Globalsecurity.org.Goebel, G. (2016). SAAB Trainers: Safir, SAAB 105, & Supporter. Airvectors.net.Hultgren, O., & Moberj, T. (1998). Abstract, in Saab 105 “SK60” Re-Engine Programme. Defence Materiel Administration Testing Directorate. Linköping, Sweden. , Peterson, G. (1997). Saab 60 år. Saab 1937-1997: Dramatik och dynamik, FlygvapenNytt, (3) 6-17.Saab. (n.d.). 1960’s. Saab.Saab. (2015). SAAB Signs Sk60 Support Agreement with FMW. Saab., Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001)., Saab 105. (2016, October 8). In Wikipedia, The Free Encyclopedia. Images: Saab sk60A in Flight by Jim Calow / CC BY-ND 2.0, Saab sk60A in Flight 2 by John5199 / CC BY 2.0, Sk60A Trainer Display by Alan Wilson / CC BY-SA 2.0Side Profile Views by Ed Jackson – Artbyedo.com

FFVS J 22

sweden flag Sweden (1943)
Fighter Plane – 198 Built

FFVS J 22B at the Flygvapnet Museum
FFVS J 22B at the Flygvapnet Museum

The FFVS (Kungliga Flygförvaltningens Flygverkstad i Stockholm/Royal Air Administration Aircraft Factory in Stockholm) J 22 was a small light fighter airplane, and an exception to the mostly Saab-built airplanes, which were the ones equipping the Flygvapnet the most. But like those made by Saab during WWII and the early Cold War, this aircraft is a product of the defence needs that the war was imposing upon the Scandinavian nation. Although not so renown as its colleagues, this fighter proved to be a feat of Swedish capacities during dire times and tight resources, compensating its comparatively small size with good firepower and good performance. Of course, and like all of Swedish-made (and imported) air assets, it was purposed with giving Sweden with tools enough to defend its territorial and airspace integrity and security, let alone its neutrality. This under a locally built armament programme while facing restrictions to foreign advanced aviation technology.

A single-seat, single-engine airplane. Its design is conventional, yet the wings are placed further bow of the airframe, with a trapezoid shape. The nose is very similar to those of the American-made fighters, with a wide and cylindrical shape due to the shape of the engine. The cockpit was also placed at the bow section of the fighter, yet slightly aft the leading edge of the wing. The canopy was a bird-canopy design. The canopy hinged to the right side.

The J 22 was powered by a SFA STWC-3G 14-cylinder air-cooled radial engine of 1065 hp, which was an unlicensed version of the Pratt & Whitney R-1830 engine. A three propeller-blade composed the other propulsion element of the aircraft. The engine-propeller combination allowed the J 22 to yield speeds up to 575 km/h (360 mph), being this speed aimed to make the fighter comparable to the Messerschmitt Me109 and Supermarine Spitfire. The first version of the fighter (J 22A/J 22-1) was armed with a set of 2 X 7,9mm and 2 X 13,2mm light and heavy machine guns. The second version (J 22B/J 22-2) was armed with a set of 4 X 13,2mm heavy machine guns. As it not carried bombs or rockets as secondary weapons like most fighter designs of those days, it was a 100%-designed fighter.

The J 22 was developed aiming at providing Sweden with an air asset enough for it to defend its airspace, by providing the Flygvapen with a rather modern fighter. But it was also aiming at producing a new aircraft through a company established solely for this purpose, as Saab was already busy producing the Saab 17 and Saab 18 bombers. in addition, it was purposed with replacing many of the outdated fighter assets the nation had by the beginning of the war. Development began in 1940, with Bo Lundberg as both head of design and head of the newly established company (FFVS). Lundberg was already having experience as head of Swedish Air Commission USA, and as chief designer of Götaverken’s aircraft division that designed the GP 8 bomber and the cancelled GP 9 fighter. He was commissioned with designing a new fighter required to use the STWC-3G (Pratt & Whitney R-1830) engine, being small and light in size and weight, and interestingly, to be made of parts manufactured by a large number of subcontractors. The J 22 development, manufacturing and testing took place at the workshop of Flygtekniska Försöksansalten (FFA) near the Bromma airport. Both prototypes crashed during testing, due to pilot’s oxygen device and engine failures. The J 22 first flight took place in 1942

The J 22 entered in with the Flygvapnet in 1943, remaining in that until 1952, year of its retirement, with 198 fighters built from 1942 to 1946. During its service, it was well received by the pilots, thanks to its good manoeuvrability and responsive controls, capable of giving a fight to the Mustangs P-51 at heights up to 5000 meters (16,000 fts). It did not have stall problems at turns or straight forward course, and the second version (J 22B/J 22-2) was considered the best in terms of firepower. Moreover, the simple systems facilitated maintenance and service. The J 22 was reportedly comparable to the early versions of the Supermarine Spitfire and of the Mitsubishi A6M Zero. Three J 22 are preserved as static displays in museums.

Design

FFVS J 22A at an airshow circa 1990
FFVS J 22A at an airshow circa 1990

The design of the J 22 is a conventional one, being a small and lightweight airplane, whose shape is very similar to most US airplanes of the era. The fighter is a cantilever mid-wing design, with its structure being a mixed steel tube and wood construction (plywood) one. In fact, the tubular-steel framework and fuselage were having coverings of moulded plywood panels. The only drawback of the design was that forward visibility was poor.

The J22 wing has the average shape of most WWII-era fighters, a trapezoid shape. It was located slightly towards the bow of the airplane, containing the fighter’s guns and the fuel tanks. In addition, the air intakes were placed at the roots of the wings. The aft section of the airplane contained the vertical and horizontal stabilizers, with the rudder dominating most of the tail, while and as a result, the horizontal stabilizers were placed before the rudder. The landing gear, in turn, was also of classic configuration – two ‘legs’ with the wheel and a tailwheel – being also retractable and rotating, very similar to the Vought-Chance Corsair F4U. The only problem with the tailwheel was that, if left unlocked and able to swivel, it could result in ground-loops. Interestingly, the landing gear was designed to accept skies, that were never installed as snow-clearance service of the runways was improved.

The engine was a SFA STWC-3G 14-cylinder air-cooled radial engine of 1065 hp, an unlicensed copy of the American-made Pratt & Whitney R-1830 engine, allowing speeds of up to 575 km/h (360 mph). given the shape of the engine, the nose has the characteristic cylindrical shape of the American homologues. The propelling system was comprised of a three-blade license-built Hamilton standard propeller connected to the engine. Alongside speed, the J 22 was deemed a manoeuvrable and easy to control fighter with good performance especially at low altitudes. Furthermore, it had no stalling problems but the tendency to flip over its back if pulling hard when turning. It was considered capable to outperform the P-51 Mustangs, and be equal to the early versions of the Zero and the Spitfire. The armament had different configurations on the two main versions: The J 22A (J 22-1) was armed with 2 X 7,9mm and 2 X 13,2mm machine guns. The J 22B (J 22-2) was armed with 4 X 13,2mm machine guns. In both cases, the armament was placed at the wings. No secondary weapons were carried.

The canopy was of a bird-cage type, which hinged to the right to allow the pilot to enter and exit the airplane, with the windshield made of 6mm laminated Gremax or acrylic, and the center part being thickened with 60mm for ballistic protection. The gunsight was a fixed reflex sight.

Noteworthy to point out, that 500 hundred contractors produced 12000 of the 17000 total parts of the J 22.

A war-time solution for a non-belligerent nation

ffvs-museum-1The J 22 is also a product of the need to defend the airspace and the neutrality of Sweden, as modern air assets were required to meet this objective. By the beginning of WWII, Sweden was having 60 Seversky P-35 (of the 120 ordered), 60 Italian-made Reggiane 2000 and 72 Fiat CR. 42 biplanes – bought as a temporary measure – and old Gloster Gladiator fighters. As Sweden did never receive the remaining 60 P-35 and 144 Vultee P-66 Vanguard it ordered from the US, due to the embargo imposed to any arms delivered to any country but the United Kingdom after the invasion of Norway by Germany, in 1940.

As a result, Sweden bought the abovementioned Italian fighters to provide the Flygvapnet with some air assets, but it was deemed necessary to introduce up-to-date fighters. Initially, Sweden considered to buy additional fighters from abroad, such as the Finnish VL Mysky, the Soviet Polikarkov I-16 and even the Japanese Mitsubishi A6M Zero. But these options were having problems, such as not bing enough or being impossible to transport into Sweden despite being available, s it was the case of the Zero.

As a result, the FFVS was established, as Saab was already concentrating on the fabrication and development of bombers and fighters, with the sole purpose of developing and manufacturing a new lightweight fighter that would provide the Flygvapnet the needed modern air assets to keeps its neutrality in a world at war. Consequently, it replaced the Gladiator, the Severski, and Reggiane and Fiat fighters while other air asserts were received – like the Mustang P-51 – and the Saab J 21 was ready to enter into service.

The fast and small Viking warrior of the skies

Although the J 22 was a very small and lightweight fighter, it was a very capable one, proving itself to be able to undertake its purposed task: defend the Swedish airspace and neutrality. The secret of its good performance was its engine and structure. It was among the fast fighters the Flygvapnet had back then, reaching speeds of 575 Km/h (360 mph). It was also a manoeuvrable fighter, with a fast turning rate – it was even capable of getting the Mustang in the gunsight by out-turning It – with responsive controls. The altitude where it tended to perform the best was at low altitudes, with the performance decreasing at higher altitudes. Stall problems where rather absent, and it was an airplane easy to maintain and service by land maintenance crews.

Variants of the FFVS J 22

  • FFVS J 22A - 22185
    FFVS J 22A – 22185
  • J 22A (J 22-1) – First production series armed with 2 X ,9 mm M/39A (Browning M2) machine guns and 2 X 13,2 mm heavy machine guns. Operated until 1952. 143 delivered.
  • FFVS J 22B - 22280 Side Profile View
    FFVS J 22B – 22280
  • J 22B (J 22-2) – Second production series armed with 4 X 13,2 mm M/39A (Browning M2) heavy machine guns. 55 delivered.
  • S 22 (J 22-3) – Reconnaissance version (the S stands for spaning, or ‘reconnaissance’ in Swedish), equipped with a vertically mounted camera. Developed from J 22A (J 22-1) airframes in 1946, refitted as fighters in 1947. Operated until 1952. 9 airframes modified and refitted.

Operators

  • Sweden – The Flygvapnet operated the J 22 during the last half of WWII, being also in service during the earlier days of the Cold War, as it was retired until 1952. A total of 198 airframes were in service, being 143 of the J 22A version, 55 of the J 22B version and 9 airframes of the first version modified to produce the S 22 version, which served for a very short period of time as reconnaissance airplane. In 1945 all the J 22 were re-designated as J 22-1 for the first version, J 22-2 for the second version, and J 22-3 for the third version. These last airplanes were re-conditioned a year later as fighters. Three J 22 remain today as museum exhibitions in Sweden. It served with seven squadrons throughout its career: F3 Malmen; F8 Bakarby; F9 Säve; F10 Barkråka; F13 Bråvalla; F16 Uppsala; and F18 Tullinge. The S22 (J 22-3) served only in the F3 Malmen squadron.

 

 

J 22 Specifications

Wingspan  10 m / 32 ft 10 in
Length  7,80 m / 25 ft 7 in
Height  3,60 m / 11 ft 10 in
Wing Area  16 m² / 172,16 ft²
Engine  1 SFA STWC-3G (Pratt & Whitney R-1830) 14-cylinder air-cooled radial engine of 1065 hp
Maximum Take-Off Weight  2835 Kg / 6,250 lb
Empty Weight  2020 kg / 4,445 lb
Loaded Weight  2835 kg / 6,240 lb
Maximum Speed  575 km/h / 360 mph
Range  1270 Km / 790 miles
Maximum Service Ceiling  9300 m /30,500 ft
Crew 1 (pilot)
Armament
  • 2 X 7,9 mm M/39A (Browning M2) machine guns and 2 X 13,2 mm heavy machine guns located at the wings (J 22-1).
  • 4 X 13,2 mm M/39A (Browning M2) heavy machine guns located at the wings (J 22-2).

 

Gallery

FFVS J 22A - 22185
FFVS J 22A – 22185
FFVS J 22B - 22280 Side Profile View
FFVS J 22B – 22280

 

FFVS J 22B at the Flygvapnet Museum
FFVS J 22B at the Flygvapnet Museum
FFVS J 22A at an airshow circa 1990
FFVS J 22A at an airshow circa 1990

ffvs-museum-1



 

Sources

Aviastar.org. (n.d.). FFVS J22. 1942. Aviastar.org.Frederiksson, U. (2002). Saab J 21/A 21/A 21R. x-plane.orgFridsell, M., & Waligorski, M. (2002). FFVS J 22 in Detail. IPMS StockholmGoebel, G. (2014). The SAAB J 21 & J 21R. Air Vectors.Henriksson, L. (2010). J 22 – FFVS J 22 (1943-1952). Avrosys.Hertze, S (2015). J22, J22A, J22B, S22-3, FFVS 22 Jaktflygplan, Spaningsflygplan. Arboga Elektronikhistoriska Förening.J 22 Memorial Flight. (2016). J 22 History. J 22 Memorial Flight.Lindqvist, R. (2013). J 22, FFVS J 22. Flygvapenmuseum.Palten, K. (2016). FFVS J 22. Flugzeuginfo.net.FFVS 22. (2016, June 26). In Wikipedia, The Free Encyclopedia.,Stenberg, D. (1976).Flygvapen 1926-76, FlygvapenNytt, (3) 8-20Söderblom, B., Rassmusen, R., Söderberg, G. (n.d.). Flygplanrevy, (12 – 17)., Images: FFVS Museum 1, FFVS Museum 2 by Alan Wilson / CC BY-SA 2.0, FFVS Taxiway by Towpilot / CC BY-SA 3.0Side Profile Views by Ed Jackson – Artbyedo.com

 

SAAB Gripen Armed In Flight

Saab J39 Gripen

sweden flag Sweden (1997)
Multirole Fighter Plane – 247 Built
A light single-engine multirole fighter, with a delta mid-wing and canard configuration. This aircraft has a fly-by-wire flight controls. Purposed with replacing the Saab 35 Draken and Saab J 37 Viggen AJ, SH, SF and JA versions in service with the Flygvapnet (the Swedish Air Force), and in service since 1995. Its development began in the late 70’s, with the aircraft intended to perform the same missions of the models it was replacing. As a result, the Gripen is capable of executing missions as fighter, attacker, and reconnaissance, being also a cheap yet well-powered and highly manoeuvrable jet, capable of integrating well with the Flygvapnet communication and infrastructure systems. It is also a platform with good upgrading capacities. Another special feature of this model is the short take-off and landing (STOL), alongside its agility and responsiveness at subsonic speeds, low induced drag and good supersonic performance. A product of Swedish innovation and defence needs, allowing Sweden to maintain its neutrality during the Cold War, the aircraft’s STOL characteristic came as a result of the policy of using highways and roads as airstrips, in order to reduce the potential damage to Flygvapnet air assets in case of attack, and to maintain air defence capacity. It was also intended to be an easy maintenance airplane, with conscripts having basic technical knowledge being able to do maintenance works. This increases the aircraft’s service life.

Design

The Gripen is designed as a mid-delta wing fighter, with a single tail and a single Volvo Flygmotor RM 12 engine. It has canard winglets that also serve as complement for the two aerodynamic brakes located at the sides of the rear fuselage. The combination of the canards and the delta wing design allows the Gripen to fly at 70-80 degrees of attack angle, allowing also STOL capabilities (800 mts/2600 ft airstrip). Its purposed aerodynamic instability is compensated with a fly-by-wire technology that bestows the Gripen with considerable fly characteristics. The engine also plays its part in shaping the Gripen characteristics, along with some additional features. The double digital control and double ignition allows the pilot and the aircraft to be safe in case of emergency. The engine itself is reinforced to withstand the impact of birds or foreign objects. The radar – an Ericsson pulse-Doppler – allows the Gripen to have powerful and sharp ‘eyes’, as it allows multiple target track and beyond visual range (BVR) for air-to-air; mapping ground and surface target indication and tracking for air-to-ground; and sea surface search and tracking.

The Digital Era

SAAB Gripen Parked

The JAS 39 has a Tactical Information Data Link System (TIDLS) digital network which provides the Gripen with a tactical advantage: to distribute and share radar and sensors information with up to 4 aircraft within a radio of 480 kms (300 miles), enabling tactical combat information and situation awareness. It also provides any pilot information about the position, speed, missile load, heading and fuel state of other Gripens. This provides also concealment to any pilot opening fire against a selected target, without revealing its position, while the launched missile – a medium-range air-to-air-missile (AMRAAM) – will be guided not only by the aircraft it was fired from, but also by the other aircraft, whose guidance can improve the missile’s accuracy. TIDLS technology however, is not a product enjoyed only by the Gripen’s development, but it is an enhanced version, as the JAS 35 Draken and JAS 37 Viggen had a similar and early datalink systems. As it is a multirole aircraft, this means it can change its mission while flying, as the pilot change the avionics and sensors in flight. Although the small size of the plane limits these capacities and payload, forcing missions to be considered before sorties, it also allows the aircraft to reduce detection by radar.

The Gripen goes to Battle 

SAAB Gripen Armed In Flight

The high adaptability and capacity of the aircraft to be easily upgraded allowed the Gripen to be modified in order to fit NATO standards, and to increase its export options. Alongside the British BAE, Saab improved and modified the Gripen so to be able to operate with NATO missiles, opening the open for the aircraft to carry more powerful missiles, and having also enhanced air-to-ground capabilities. Those modifications allowed the Gripen to support NATO intervention in Libya (Operation Unified Protector) with tactical air reconnaissance, enforcement of the no-fly zone, the arms embargo, and support for civilian protection. It was also able to receive updates and information from NATO E-3 AWACS airplanes. The Gripen performance was optimal during the operation, as it flew 570 missions, around 1770 flight hours, and delivered 2770 reports.

A Coveted Fighter

Saab Gripen Taxiing

Given its characteristics and its good relation cost/operation, the Saab JAS 39 Gripen has received the attention of many countries that expressed their interest in the fighter. Countries like Argentina, Austria, Belgium, Botswana, Bulgaria, Colombia, Croatia, Ecuador, Estonia, Finland, India, Indonesia, Kenya, Latvia, Lithuania, Malaysia, Mexico, Namibia, Peru, The Philippines, Portugal, Serbia, Slovakia, Slovenia, Uruguay, and Vietnam, all could become potential operators of the Gripen.

Variants

  • JAS 39A – The basic and first version entering in service with the Flygvapnet, later upgraded to the C version.
  • JAS 39B – The two-seated variant of the JAS39A, purposed for training, specialised missions and flight conversion, with the cannon and the internal fuel tank removed to allow the second crew member and life support systems.
  • JAS 39C – A NATO-compatible version with overall enhanced capabilities, as well as in-flight refuel.
  • JAS 39D – The two-seat version of the JAS 39C.
  • JAS NG – An improved version of the Gripen, having a new engine (The General Electric F414-400), a new radar (RAVEN ES-05 AESA), and increased payload and fuel capacity. Its development was undertaken through a partnership with Switzerland. A product of the changes brought by the end of the Cold War, as airbases were closed with fighter units being reduced, as well as the closure of the road base system for take offs and landings. But it is also a product of the new assessed threat Sweden could be facing, which required a new fighter with extended range, increased weapons, enhanced electronics, fighter communications (with satellite) and Electronic Warfare (EW) capability.
  • JAS 39E– Single seat version derived from the JAS NG.
  • JAS 39F – Two-seat version derived from the JAS 39E.
  • Sea Gripen – Proposed carrier version of the NG.
  • Gripen UCAV – Proposed unmanned combat version of the JAS 39E.
  • Gripen EW – Proposed electronic warfare version derived from the JAS 39F.

Operators

  • Brazil – 28 Gripen JAS 39E and 8 Gripen JAS 39F on order, with options of assembling some locally, while the Brazilian Navy is interested in the Sea Gripen for use on its single aircraft carrier. Brazil could export Gripen into the regional market. There is a provision for joint development with Sweden.
  • Czech Republic – 14 Gripens on lease (12 JAS 39C and two JAS 39D) until 2027 and to replace the existing Mig 21 fleet. given the current tensions between the West and Russia, Czech Republic government considered leasing 6 more Gripens. Gripen have had a good use by the Czech Air Force, with membership of the NATO Tiger Association, awarding the Tiger Meet Silver Tiger Award as ‘Best Squadron’. Gripen from Czech Republic also take part in NATO Baltic Air Policing, while performing homeland defence duties at the same time.
  • Hungary – 12 Gripens on a lease-and-buy basis (11 JAS 39 C and one JAS 39D) until 2022. Two Gripens lost in crashes. Hungarian Gripens have been taking part of NATO Baltic Air Policing since 2015.
  • South Africa – 26 Gripens are in service with the South African Air Force (17 JAS 39C and 9 JAS 39D), facing restricted operation given lack of qualified pilots and financial resources. However, South African Gripens enjoyed a local EW development – in cooperation with Israel – and datalink, as well as radar weather mode. The Gripens saw action when securing South African airspace during the FIFA 2010 World Cup, supporting South African troops in the Democratic Republic of Congo in 2013, and taking part in Nelson’s Mandela funeral.
  • Sweden – The Flygvapnet has 156 Gripen, 50 of which are JAS 39A, 13 are JAS 39B, 60 are JAS 39C and 11 are JAS 39D. Two (a JAS 39C and a JAS 39D) were lost in accidents.
  • Thailand – 12 Gripens (8 JAS 39C and 4 JAS 39D) serve with the Thai Air Force, where eventually 6 more Gripen would be bought. As these Gripen operate over the Andaman Sea and Gulf of Thailand, they have anti-ship capacities.
  • United Kingdom – Operated by the Empire Test Pilots’ School, with 3 JAS 39B, with training and testing purposes.

Gripen Specifications

Wingspan  8.4 m / 27 ft 7 in
Length  14.10 m / 46 ft 3 in
Height  4.7 m / 14 ft 9 in
Wing Area 30 m² / 323 ft²
Engine 1 Volvo Flygmotor turbofan RM12
Maximum Take-Off Weight 14000 Kg / 30,900 lb
Empty Weight 6800 kg / 15,000 lb
Loaded Weight 8500 kg / 18,700 lb
Maximum Speed 2450 km/h / 1522 mph
Range 3250 KM / 1,983 miles (with external drop fuel tanks)
Maximum Service Ceiling 16000 m /52,500 ft
Climb Rate 100 s from brake release to 10 km altitude / 180 s approx to 14 km
Crew 1 or 2
Armament • 1 Mauser BK 27 27mm cannon
• 6 hardpoints that could allow 6 air-to-air missiles, 4 air-to-radar missiles, 4 air-to-surface missiles, 5 smart bombs, 2 anti-ship missiles, 5 bombs, 2 stand-off weapons, 2 ECM Pods, 2 recce Pods, 1 FLIR/LDP Pod, 2 AACMI Pods, and 3 fuel tanks

Gallery

J39C Gripen of the Flygvapnet – Swedish Air Force armed with wingtip IRIS-T Missiles
J39C Gripen of the South African Air Force equipped with a wing drop tank and IRIS-T missiles

Sources

Berger, R (Ed.). Aviones [Flugzeuge, Vicenç Prat, trans.]. Colonia, Alemania: Naumann & Göbel Verlagsgessellschaft mbH. , Hellenius, B (March 2014). Griffin Takes Wing. Air Forces Monthly, (312), 50-65. , SAAB (March 2016). Gripen brochure. , SAAB (n.d.). Gripen-Advanced Weapons Flexibility. , SAAB (n.d.). Gripen dimensions. , Singh, V (May-June 2014). The Gripen forges ahead – in ‘Super’ mode. VAYU Aerospace & Defence Review, (3) 61-65.  , Sharpe, M (2001). Jets de Ataque y Defensa [Attack and Interceptor Jets, Macarena Rojo, trans.]. Madrid, Spain: Editorial LIBSA (Original work published in 2001). , Wikipedia:Saab JAS 39 Gripen Images: SAAB Gripen Taxiing by Airwolfhound / CC BY-SA 2.0 ,  SAAB Gripen Parked by Milan Nykodym / CC BY-SA 2.0 , SAAB Gripen Armed in Flight by AereiMilitari.org / CC BY-NC 2.0