Tag Archives: WWI

AGO S.I

German Empire (1918)

Armored Ground Attack Aircraft [2 Built]

One of the two AGO S.I, this would be one of the first dedicated “tank busting” aircraft built. (Otto, AGO and BFW Aircraft of WWI)

The AGO S.I was an armored, heavily armed ground attack aircraft designed to fill the requirement for the German Luftstreitkräfte  their S type plane; a dedicated anti-tank ground attack aircraft. Before the end of the war, two of the type were produced, but the war would end before production could begin, nor did the prototypes see service. The aircraft featured a downward facing 20mm Becker cannon which it would use against the thinly armored roofs of tanks.

Tank Troubles and the Search for a Solution

The introduction of the tank in 1916 was a turning point for all modern warfare. The use of the machines to break through barbed wire and enemy trench lines proved itself effective, and as the war dragged on, the number of tanks increased year over year. Germany would use infantry based special weapons such as armor piercing K-bullets in rifles and machine guns, the heavy Tankgewehr m1918 rifle, or artillery bombardment to stop the metal monsters. The Germans would show hesitation in producing their own tanks due to resistance from the German High Command and a lack of industry to produce them in large numbers, but would eventually do so with the Sturmpanzerwagen A7V. The type however, would prove to be riddled with flaws that rendered it able to do little to counter the allied tank numbers. In addition, the A7V would only arrive in 1918, the last year of the war.

A 20mm Becker cannon mounted to the side of an Albatros J.I armored aircraft. This weapon would begin being carried by aircraft late in the war, and was required to be mounted on the S type aircraft. The Becker is known for being the basis of the famous 20mm Oerlikon cannon. (Albatros Aircraft of WWI Volume 3)

Aircraft were never used in a major role to destroy tanks during the war, but the two would encounter each other nonetheless, with German aircraft able to score several victories against them. There seemed to be little interest by the Idflieg in developing aircraft or aerial weapons to be deployed specifically against tanks for the majority of the war, until around the start of 1918. The Idflieg would designate a new type of aircraft, the S type, for a dedicated aircraft meant for ground attack and destroying tanks. The S type anti-tank aircraft was meant to be an armored aircraft with a requirement to mount the 20mm Becker automatic cannon. Armored aircraft themselves weren’t something new within the German Empire, as they were categorized under the J type. These were dedicated armored aircraft and were in use operationally by this point of the war. Some examples included the AEG J.I and Junkers J.I. The Becker Cannon was also in production and had been mounted on various aircraft by this time, mostly by twin engined G types but there were ongoing developments to put the weapon onto a single engine aircraft. The Albatros J.I was one such aircraft and a number would have the cannon mounted on a pintle on the side of the craft, but crews found the weapon placement and pintle mount made the weapon hard to operate and aim. Eventually it was found that this weapon could be most effectively mounted on a single engine aircraft by being placed at an angle inside the hull to fire downward towards the ground. The cannon would be placed this way on the new S types, where it could fire at the thin roofs of tanks. One would think that manufacturers familiar with designing armored aircraft would rise to the occasion, such as Junkers who were at the forefront of developing metal skinned aircraft, or AEG who were producing operational armored aircraft, but surprisingly, it was the the smaller company of AGO that proceeded with developing the only an S type aircraft, and complete it.

The AGO S.I

An example of an AGO C.IV. While this aircraft was AGO’s most produced, it was not liked by its crews due to flight handling and issues with the fuselage. (Otto, AGO and BFW Aircraft of WWI)

AGO Flugzeugwerke was a smaller aircraft manufacturing company in Germany that had found moderate success with its two-seater C type aircraft. The company was known for its C.I, which was the only mass produced single-engine pusher aircraft deployed by Germany in the war, and later, by the C.IV, its most successful aircraft. The C.IV was their most produced aircraft during the war, and the fastest C type at the time of its introduction thanks to its tapered wings, with over 70 being used operationally. Its moderate success however, was overshadowed by a hatred of it by its crews due to issues with its handling and problems arising with the constriction of the fuselage. This disdain for the aircraft would eventually lead to it being removed from service and its production being canceled around September of 1917. Despite this, the company had continued developing their C type aircraft line until 1916. While the S type was a two seater, AGO appears to have no experience with developing an armored aircraft, as all of their previous aircraft were of simple wooden and fabric construction. Development on their own S.I likely began around the time of the creation of the S nomenclature. A patent for the aircraft’s design was filed in July of 1918, showcasing how it’s seating and armor were laid out for the pilot and gunner. Details regarding its development are extremely lacking but it is known that two S.I aircraft were completed by October of 1918. The design was a rather large single-engine aircraft with a boxy fuselage, a consequence of its armor layout. The Becker cannon is known to have never been mounted on the aircraft but accommodations in the design were made, most apparent is the lack of an axle between the wheels. This was done to allow the hull mounted cannon to fire unobstructed. Despite this being done for the cannon, the removal of the axle was almost unseen in this era of aircraft and would become a standard design aspect in the postwar years as aircraft design streamlined. Due to its completion so close to the war’s end, it rarely flew and its performance went undocumented. All development of this aircraft was abruptly brought to a halt a month after the two aircraft were completed due to the war’s end on November 11th. With the signing of the Armistice, all combat aircraft were ordered to be destroyed or transferred, and this is without a doubt the former is the fate the two S.Is met. No further development of the type was allowed after this. The S.I was the last aircraft project AGO would work on before the end of the war.

 

Direct frontal view of the AGO S.I (Otto, AGO and BFW Aircraft of WWI)

Design

The AGO S.I was a conventional biplane designed to fill the role for the S type aircraft. While its specifications aren’t known, the size of the aircraft is evident in the photos that exist that the aircraft was quite large for a single engine aircraft. The fuselage was armored, evident via the angled shape of it. This was done to protect the aircraft in its low level attack runs on the enemy, and would offer protection against small arms fire. According to the patent, the armor was focused in the nose section, surrounding the engine, pilot and gunner positions. An armored plate separated the pilot and gunner’s positions at an angle to accommodate the 20mm cannon. The rear of the fuselage tapered into the tailplane. The two bay wings of the aircraft were large and rectangular in shape. Each bay had two wires going across. Control surfaces of the aircraft were standard, with a large rudder at the back, conventional elevators, and ailerons on the upper wing. At the front was a 260hp (194kW ) Basse und Selve BuS.IV 6-cylinder inline engine that drove a wooden two-blade propeller. This type of engine was often found on larger G type aircraft but the S.I likely had them to bring the heavily armored aircraft into the air. The aircraft would have a fixed landing gear located beneath around where the pilot sat. The aircraft had the unique distinction of having no axle, a feature virtually unseen in aircraft of the era. This was done to allow the hull mounted cannon to fire without having the axle obstructing it. For the extra support, three struts connected each landing gear to the aircraft. Each landing gear had one rubber wheel. At the tail end of the aircraft was a landing skid.

The patent for the armor and gun position in the S.I (Otto, AGO and BFW Aircraft of WWI)

For its armament, the Ago S.I was to have two machine guns; one mounted in the rear for the gunner to use on a flexible mount to fire around the aircraft, and another was likely to be mounted forward for the pilot to use at the front. The centerpiece of the armament was a 20mm Becker Cannon. The cannon would be mounted in the center of the fuselage, directly underneath where the pilot would sit. To fire the gun, the gunner would sit down into the fuselage at a dedicated firing seat in the hull. From here he could operate the weapon and aim at tanks beneath the aircraft.

Conclusion

The AGO S.I was developed too late to see combat and with its performance being unknown its would-be impact on enemy tanks is likewise unknown. Despite this, it represents one of the very first instances of an aircraft built with the destruction of enemy armor in mind, a role that would continue to develop into the Second World War, with aircraft like the Henschel Hs 129, Ilyushin Il-2, and further even until today with the Fairchild A-10 Thunderbolt II.

Interestingly, a month before the two S.Is were completed, 20 of the aforementioned AEG J.II armored aircraft would be delivered with the Becker Cannon mounted in their hull similar to how it would be in the S.I for use against tanks. It is not known whether these aircraft saw combat or how they performed with the modifications.

Although the effectiveness of tank busting aircraft of WW2 has been debated in recent years, the AGO S.I would have several benefits going for it during the First World War. The tanks of this era were slow, and the Mark V tanks the S.I would no doubt encounter would have a top speed of 5mph, making the tanks a fairly easy target for S types. The Mark V also had considerably less armor then later tanks, with a meager 8mm of armor plate for the roofs, making these vehicles easier to damage if the aircraft’s gunner managed to hit it. However, being able to hit tanks was still quite a difficult task to accomplish, and with performance figures not currently being known for the S.I, it can only be debated as to how well it would perform its role.

After being shut down in 1919, AGO Flugzeugwerke would be brought back by the Nazi Government and would produce aircraft once more. The AGO Ao 192 seen here is one of the few original products the company would produce.

AGO Flugzeugwerke would only survive for less then a year after the First World War, its founder attempting to instead shift their production into automobiles, but they would not find success and would close the production facilities down. Despite this, two decades later the Nazi government would reconstitute AGO for aircraft production once more in 1934, and would bring the company back to life. They would mostly produce aircraft from other companies in preparation for the encroaching war, but AGO would have their own design bureau and would work on a select number of their own designs, like the AGO Ao 192 twin engine transport plane.

Variants

 

  • AGO S.I – Armored two-bay biplane design with an armored fuselage and a focus on attacking enemy armor. It was equipped with 2x machineguns and 1 20mm Becker Cannon. 2 built

 

Operators

 

  • German Empire – The AGO S.I was meant to serve the Reichsluftkreite in a ground attack & tank destroying role but arrived too late to see service in the war.

AGO S.I Specifications

Engine 1x 260 hp ( 194kW ) Basse und Selve BuS.IV 6-cylinder inline engine
Propeller 1x 2-blade wooden propeller
Crew 1 Pilot

1 Gunner

Armament
  • 1x 20mm Becker Cannon
  • 2x machine guns (1 forward, 1 rear mounted)

Gallery

Sources

Herris, Jack. Otto, AGO, and BFW Aircraft of WWI: A. 2019.

Weird Wings of WWI: Adventures in Early Combat Aircraft Development. 2023.

Herris, Jack. Development of German Warplanes in WWI: A Centennial Perspective on Great War Airplanes and Seaplanes. 2012.

B. David, Sturmpanzerwagen A7V.https://tanks-encyclopedia.com/ww1/germany/sturmpanzerwagen_a7v.php

Stiltzkin. Effectiveness of Tactical Air Strikes in World War II – “Tank busting”. https://tanks-encyclopedia.com/articles/tactics/tank-busting-ww2.php

 

Sopwith T.F.2 Salamander

United Kingdom (1918)

Ground Attack Aircraft [300-500+ Built]

A frontal view of a production Sopwith Salamander. The entire front section of this aircraft was armored. (Wikipedia)

The Sopwith Salamander was a dedicated ground attack aircraft, at this point known as a trench fighter, designed for use by the Royal Air Force in the First World War. The Salamander was based off of the Sopwith Snipe fighter and reused many components, but was much more armed and armored. Only a few Salamanders would be assigned to squadrons for testing during the war and none would see frontline combat. After the war, the Salamander was in service with squadrons in British territory until at least 1922. The aircraft was interesting as, in addition to its other modifications, it would be one of the first aircraft to be officially painted by the RAF in camouflage, most likely being the first in RAF aircraft to do so.

The Trench Fighter: Birth of the Ground Attacker

Rear view of the T.F.1 Camel. This was Sopwith’s first attempt at a dedicated Trench Fighter before the Salamander. (Sopwith Aircraft from 1912-1920)

Late into the First World War, the British Royal Air Force began using single-engine fighters to deliberately attack enemy trenches. This was seen at the Battle of Ypres and Cambrai in 1917. Oftentimes, the types used for this role could not perform well enough to dogfight or had some other glaring issue that prevented them from seeing widespread service. Although not their original purpose, these “Trench Fighters” were the first evolutionary step to creating what is now known as dedicated ground attack and close air support aircraft. The Sopwith Aviation Company began experimenting with dedicated, purpose-built trench fighters in 1918. The first of these was a derivative design based on their famous Sopwith Camel fighter. The T.F.1 Camel, TF standing for Trench Fighter, was a modified Sopwith F.1 Camel that had additional armor and was to be used to strafe trenches with a machine gun or bombs. Despite work being done on the T.F.1, it was only considered as a test for a trench fighting aircraft and was never meant to enter service nor production.

Instead, the Royal Air Force was looking for an aircraft with a more powerful engine, which the Camel airframe could not accommodate. Sopwith looked instead to their recently developed Snipe fighter. The Sopwith Snipe aircraft had been designed in late 1917 as a successor to the esteemed Sopwith Camel. It would not enter widespread service until September of 1918 and would only see combat for three months before the end of the war. Despite its short combat service, the Snipe proved itself as one of the most advanced fighters of the time, thanks to its powerful engine and excellent maneuverability. All of this had yet to be proven, however, when the trench fighter derivative design was being drawn up, as the Snipe had only just started testing in late 1917.

Official work began on the trench fighter Snipe in January of 1918. This machine was seen to have several advantages over the TF1. The newer design of the Snipe proved to be much more agile and it was able to carry the powerful 230 hp Bentley BR2 rotary engine. There were three factors that sought to specialize the design of this new aircraft; engine, armor and armament. A rotary engine was favored over an inline on the aircraft because an armored cowling could easily fit over the engine and was thus less likely to be hit from ground fire. For armament, it was planned to have a single forward facing Vickers machine gun with two more in a downward firing position, akin to the armament of the TF1. This idea was ultimately scrapped and two forward facing Vickers were chosen instead, like the armament on the Snipe. Relating to the armor, the front section of the fuselage was made to be a heavily armored box that would protect the pilot and engine from enemy fire. It was optimistically thought only three things would be able to shoot this new aircraft down; a direct hit from anti-air artillery, damage to the flying wires or heavily damaging the main spar. Three prototypes of the new trench fighter aircraft began construction in late January 1918. The first of these would be airworthy and ready in April. By now, the aircraft had received an official name; the Sopwith T.F.2 Salamander.

An example of a production Sopwith Snipe. This would be one of the best aircraft the RAF would field in the later stages of the First World War, and is the aircraft the Salamander would be based on. (Pilots and Planes)

Design

A cockpit view of the aircraft. (Imperial War Museum)

The Sopwith T.F.2 Salamander was an early ground attack aircraft based on the Sopwith Snipe fighter. The two aircraft shared many components, but the Salamander would have a number of features that would make its design unique. It had a wingspan of 19ft 6in (9.5 m). The wings were of two bay construction and consisted of a frame covered in canvas. The fuselage was of all wooden construction and covered in fabric, like the Snipe. It had a length of 19ft 6in (5.9 m). In total, the aircraft had a height of 9ft 4in (2.8 m). The sides of the fuselage were flat, being a change from the rounder fuselage of the Snipe.

In the front of the aircraft would sit the 230-hp Bentley B.R.2 air-cooled radial engine. The eleven-cylinder Clerget 11E engine was an alternative to the Bentley, but no Salamander would be equipped with this engine. The engine and cockpit section of the aircraft would sit in an armored box that would protect its most vital assets. The armored box was 8 mm thick in the front (the armor over the engine and the engine itself also factored in as frontal protection), 6 mm for the sides, 11 mm for the floor, and 10-gauge sheet metal with an additional 6-gauge sheet at the rear. In addition to the armored box, the engine would have an armored cowling over it. The aircraft had around 650 Ibs of armor in total. The sheer amount of armor was meant to protect the aircraft from German anti-armor rounds fired from short range, something it would no doubt deal with at the frontlines.

The controls and cockpit were likely carried over from the Snipe. Behind the cockpit was an armored head fairing that was not present on the Snipe. This detail is a distinct visual difference that one can use to identify the Salamander over the Snipe. Beneath the cockpit was the undercarriage and landing gear. During testing, it was found the armor made the aircraft quite hard to land, and the landing gear was further reinforced during development to assist in this area. The fuselage would taper towards the rear and tailplane. Beneath the tail was a simple landing skid. The tail and rudder were small at first on the prototype Salamanders, like on earlier Snipes, but this would be replaced by a larger rudder and tailfin on the production versions. At first, the tailplane was rigged via wires but this was replaced by four steel tubes connecting at the top and bottom.

A view of the armored front section of the aircraft. (Weapons and Warfare)

For fuel, the Salamander would carry less than the Snipe to accommodate the extra weight of the armor. The fuel delivery system was composed of a Badin vacuum-feed system with a Weyman hand pump connected to the main petrol tank for standby use. The fuel delivery system was protected with armor and rubber along the piping to prevent leaks or fire. In addition to the main petrol tank, there was an oil and gravity tank connected via piping.

The armament of the Salamander went through a number of iterations before its final layout. Originally, the aircraft was going to have a single forward facing Lewis machine gun, with two more facing downwards into the hull, but this was replaced by two synchronized Vickers guns that were staggered to house more ammunition (1000 rounds each). There exist other known layouts pf the Salamander but it is unknown if any of these were tested at any point. These included eight downward firing guns in one layout and two downward facing Lewis guns with two more over the center (in addition to the standard two Vickers). No photos of these two layouts exist. For special missions, the Salamander could carry up to four 20 Ib (9 kg) bombs or a single 112 Ib (51 kg) bomb.

A direct frontal view of the Sopwith Salamander. (Wikipedia)

The Sopwith Salamander: World War Woes

Rear view of the 3rd prototype Salamander. This example has the early rudder. Unfortunately this particular aircraft would be lost in a crash. (Pilots and Planes)

The Salamander would have its first flight on April 27th at Brooklands. The prototype Salamander, E5429, shared the wing mainplane, ailerons and tail control surfaces with the early model Snipe, but these would be improved later on the production models. The improvements were the same as done on the Snipe, which included increasing the size of the rudder. On May 9th, the first Salamander prototype was sent to France for service testing. There is a strange overlap in information with the prototype. Some sources claim that it returned to England on June 30th for further testing at Martlesham Heath, but others claim the prototype was lost to a crash in France on May 19th. Perhaps this was confused with the 3rd prototype, which did crash at a later unknown date. By this point, the other two prototypes were completed (E5430 and E5431). Testing found that the aircraft performed well, but problems appeared with the controls, which were found to be sluggish due to the extra armor.

The Salamander did have its fair share of critics, with several pilots being harsh towards the slower controls of the aircraft and some even finding the concept of an armored aircraft a waste of resources. Many of those who were strong critics of the aircraft criticized it as they did conventional fighters of the time, glossing over its specialized role of ground attack and arguing its armor would make it sluggish in a dogfight, when the aircraft was never intended to operate as a dogfighter. Originally, a plan for 6 prototypes was made but the last 3 were canceled. The 3rd prototype would stagger its machine guns to accommodate the increased amount of ammunition the Salamander had over the Snipe. This change would be present on all Salamanders going forward. With the aircraft performing well in testing, an initial order of 500 aircraft was requested in the early summer months of 1918. Sopwith would begin building production Salamanders at their factories, being constructed alongside the Snipe. In addition to Sopwith, several other aircraft manufacturers would begin constructing Salamanders as well; Air Navigation Co Ltd, National Aircraft Factory No.1, Palladium Autocars Ltd, Glendower Aircraft Co Ltd and Wolseley Motors Ltd. The production versions differed from the prototype Salamanders, having the larger tail fin and rudder as well as the ailerons from the production Snipes being fitted, as well as the staggered machine guns from the 3rd prototype.

A production line at a Sopwith factory where both Salamanders and Snipes are under construction. The first row are incomplete Salamanders. (Armament of British Aircraft)

As the year went on, production for the Salamander increased, as the order jumped from from 500, to 600 to 1400 by the war’s end. Producing the Salamander was found to be more difficult than the Snipe, thanks to its complicated wiring due to the extra steps of creating the armored cockpit area. Problems also began to be found with the armor, as the box was found to warp after some time and distort the frame. This was not a known problem at first, but it plagued many of the early production versions after the war. In October, production Salamanders began being painted in unique disruptive camouflage patterns. This practice started on the 3rd prototype. This would be one of the first times the RAF would officially camouflage paint aircraft, something that would eventually become a mainstay in the next World War. By early November, two Salamanders were sent over and stationed in France, with one being assigned to No 86 Squadron at Phalempin. No 86 Squadron had just been assigned as a dedicated ground attack unit when it arrived. Back in Britain, squadrons No 95 at Weyton, and No 157 at Upper Heyford were also reworked to be dedicated trench fighting squadrons and equipped with five Salamanders each. No 157 Squadron was scheduled to leave for the front on November 21st. With production rapidly increasing and the aircraft soon to be used at the front, all of this was suddenly brought to a halt when the Armistice was signed on November 11th.

 

Postwar Mediocrity

A Sopwith Salamander showcasing its unique camouflage livery (RAF Museum)

With the signing of the armistice, all plans to ship the Salamander-equipped squadrons to the front were canceled. Production was soon to be cut short as well, as the need for such a specialized aircraft disappeared. Gradually, the order of 1400 was decreased to a much smaller number. Sopwith and Glendower continued producing the Salamander until mid 1919, when total production was completely halted. The other companies mentioned before either stopped production entirely or produced only a few more Salamanders after the Armistice. The Salamander was prepared to be used in full force had the war continued into 1919, with an expected thirteen full Salamander squadrons stationed in France by May. There were expected delays with the production of the Bentley engine, so five of these squadrons were to be equipped with the aforementioned Clerget engines. The exact number of Salamanders produced varies from source to source. The most common number found is that 210 were produced in total, but other sources claim that the actual number is closer to 300. Others claim that almost 500 were built. None of these numbers can truly be confirmed but it is likely much more than the commonly thrown around 210.

Rear view of a Sopwith Salamander (Imperial War Musuem)

Postwar, the Salamander did not find itself too popular, as many issues rose up with the design. The warping of the armor began to become a serious problem on early production Salamanders and it was also found the first 70 Salamanders built by Sopwith had upper wings from Snipes, which were not capable of supporting the heavier Salamander. All of these 70 aircraft were found to be extremely dangerous to fly and it took until December of 1918 for the problem to be realized and fixed. From what can be gathered, most of the production Salamanders were put into storage after the Armistice, with many being finished and immediately sent into storage. Flight testing of the type continued until 1920 despite all interest in the Salamander seemingly being lost in mid 1919.

In addition to the disruptive camo, there is mention of a Salamander being painted in a type of lozenge camo, similar to German aircraft schemes in the war, but no photos are known to exist. It was to be tested at Farnborough alongside the regular camo in July of 1919 but it was unlikely anything became of the tests. Despite the lack of interest, the Salamander did occupy a number of squadrons post war, however the details of where and when are sparse. The latest Salamanders mentioned in RAF service were a squadron stationed out of Egypt in 1922. This would have coincided with the Chanak Crisis against Turkey. A few Salamanders were sent to foreign nations for testing. An unknown Salamander was sent to France to be tested by the Section Technique de l’Aéronautique (Aeronautical Technical Section) in Villacoublay, France. Salamander F6533 was sent overseas to America for trials and testing by their Army Air Service. No further orders or Salamanders were made by America after this and the sole example was known to have been still at McCook Airfield as late as 1926. It is likely the warping issue happened with this particular aircraft, as beneath the cockpit “This machine is not to be flown.” was printed and was seen in photographs of the aircraft.

Salamander F6533 at Mccook Airfield (Pilots and Planes)

Many combat aircraft of the First World War found new life in the following years in the hands of private collectors or attending airshows for spectacular performances. The Salamander was unfortunately not one of these aircraft due to its specialized nature and slower performance compared to the fast aircraft that were featured in such displays. With the purpose of the aircraft now gone and with no future in sight, the Salamander was left to be forgotten as newer aircraft replaced it in squadrons and eventually all would be scrapped. None survive to this day.

Conclusion

The Salamander was one of the first British attempts to create a dedicated ground attack aircraft. In addition, it first tested camouflage patterns on RAF aircraft. Unfortunately, it came too late, if only by a few weeks, to be tested in combat. With the war over and the need for such an aircraft gone, the dream of the Salamander strafing enemy positions died and it fell into obscurity as the type was eventually completely scrapped. Had it entered combat, it would have encountered the same problems it did postwar, which would have left the aircraft prone to accidents of its own design and would have taken time to repair in the field. A strange, and perhaps sad, note is the Salamander was the last Sopwith aircraft to enter service with the RAF before the company became defunct in 1920.

Variants

 

  • Sopwith T.F.2 Salamander Prototypes – The first prototypes for the Salamander had many of the same features as the Snipe, including sharing the mainplane, unstaggered guns and the tailplane was supported by wires.
  • Sopwith T.F.2 Salamander Production – The production version of the Salamander had staggered guns, provisions for carrying bombs, and the tailplane was supported by four steel rods. The first 70 production aircraft accidentally were equipped with the upper wings of the Sopwith Snipe.

 

Operators

 

  • United Kingdom – The Sopwith Salamander was built as a dedicated Trench Fighter for the Royal Air Force, but hostilities would stop before it could be sent to the frontlines. After the war, most Salamanders would be put in storage, but a few would be sent abroad, such as to Egypt.
  • United States of America – A single T.F.2 Salamander (F6533) was sent to McCook Field for testing.
  • France – A single T.F.2 Salamander was sent to France for testing with the Section Technique de l’Aéronautique in Villacoublay, France.

Sopwith T.F.2 Salamander Specifications

Wingspan 31 ft 2 in / 9.5 m
Length 19 ft 6 in / 5.9 m
Height 9 ft 4 in / 2.8 m
Wing Area 272 ft² / 25.3 m²
Engine 1x 230 hp ( 171.5 kW ) Bentley B.R.2 Radial Engine
Propeller 1x 2-blade wooden propeller
Weights
Empty 1844 lb / 836 kg
Maximum 2512 lb / 1139 kg
Climb Rate
Time to 5,000 ft / 1,525 m 6 minutes 5 sec
Time to 6,500 ft / 1,980 m 9 minutes 6 sec
Time to 10,000 ft / 3,050 m 17 minutes 5 sec
Maximum Speed 117 mph / 188 km/h at 10,000 ft / 3,050 m

123 mph / 198 km/h at 6,500 ft / 1,980 m

125 mph / 201 km/h at 3,000 ft / 915 m

Cruising Speed 125 mph / 201 kmh
Endurance 1 ½ hours
Maximum Service Ceiling 13,000 ft / 3,690 m
Crew 1 pilot
Armament
  • 2x synchronized Vickers .303 machine guns (1000 rounds per gun)
  • 4x 20 Ib (9 kg) bombs or 1x 112 Ib (51 kg) bomb

Illustrations

The Salamander in standard RAF livery

 

Several Salamanders would receive a standardized camouflage pattern, they were among the earliest RAF planes to use an official camouflage livery.

Credits

  • Article written by Medicman11
  • Edited by  Henry H. & Stan L.
  • Ported by Henry H.
  • Illustrated by Carpaticus

 

Sources

https://www.baesystems.com/en/heritage/sopwith-salamander

https://www.rafmuseum.org.uk/blog/salamandrine-fire/

King, H. F. Sopwith Aircraft, 1912-1920. Putnam, 1981.

Mason, Francis K. The British Fighter since 1912. Naval Institute Press, 1992.

Green, W. and Swanborough, G., n.d. The complete book of fighters.

 

 

Upson Balloon

sweden flag USA (1915)
Observation & Training Balloon – 10+ Built


The Kite Balloon operated by the Navy at Pensacola. This particular balloon is based off the first patent. [Naval History and Heritage Command]
The Upson Kite Balloons, also known as Goodyear Kite Balloons or simply Upson Balloons, were a series of three observation balloon designs by Ralph Hazlett Upson to improve upon the design of the German Parseval-Sigsfeld Drachenballon. Two of the designs would be built by the Goodyear Corporation and sent to various balloon training schools and even operate off of ships, but the type was found to not offer much improvement over the Drachenballon, and the much more advanced Caquot balloon which would be introduced only a year after the Upson balloons were built, making the type null. A 3rd design would be patented but wouldn’t be built.

Ralph H. Upson and the Parseval-Sigsfeld Drachenballon

R.H Upson outside of the Goodyear Hangar in Akron, 1917 [US National Archives]
Ralph H. Upson was a pioneer in balloon and airship development in America in the early 1900s. In 1913, using his own airship design, he would win the International Balloon Race. Upson was an employee of the aeronautics division of the Goodyear Rubber and Tire Corporation where he was a pilot and engineer on the various lighter-than-air projects the company had been working on. Upson would mainly work at the Goodyear plant in Akron, Ohio. In 1914, the company began building observation kite balloons for the US Army to use in their balloon divisions. The main type of kite balloon in use was the German designed Parseval-Sigsfeld Drachenballon. The Drachenballon was designed over a decade before in 1898 and was a replacement for the spherical observation balloons of the previous century, as the latter was found to be almost unusable when in windy conditions. The Parseval-Sigsfeld design was built in such a way it would face towards the wind thanks to a large, air-inflated steering bag at the rear of the balloon. Thus it was named Drachenballon, or “kite balloon”. America would build and operate several Drachenballons before their entrance into the First World War.

An example of a German-operated Parseval-Sigsfeld Drachenballon. [Waffen Arsenal 149]
Upson would begin designing an improvement over the Drachenballon in 1915. Using the knowledge he learned from working on airships, he’d incorporate a number of features that would hopefully improve the overall stability of the German balloon. Two designs would be created at first in late 1915, with the patents on these designs being filed on June 20th, 1916.

Kite Balloon Design 1: Back to Basics

Kite Balloon Design 1 in the patent. The Navy-operated balloon in Pensacola is of this type. [Google Patents]
An Upson balloon being inflated at Pensacola. [State Archives of Florida]
The first of these designs was essentially a heavily modified Drachenballon. Its overall appearance and construction was the same. The balloon consisted of a large cylindrical gas bag. In the nose was a valve that regulates the pressure and gas and can be opened for release automatically or manually. On the underside was a neck to which the hydrogen gas was filled from. The Upson’s balloon’s neck was much longer than the neck on the Drachenballon. On the sides of the balloon were two stabilizing fins. On the Drachenballon, these fins are rectangular in shape. On Upson’s design, these would be triangular in shape and would sag down in flight. According to Upson, the rectangular fins of the Drachenballon only offered stabilization horizontally, while his fins would also prevent yaw and pitch movement. Internally at the rear was a large air bag to keep the balloon’s shape stable if the balloon isn’t fully inflated and keep the balloon at a 30-40 degree angle while in the air. The main difference between Design 1 and the Drachen involved the aft section of the balloon. On the standard Drachen is a large air-inflated steering bag that would keep the aircraft stable. On Upson’s design, the balloon would instead slightly taper at the rear. The steering bag would be removed altogether, instead replaced with a large keel-shaped bag. Upson’s thinking behind this change was that the steering bag wasn’t aerodynamic and instead opted for the more sleek keel bag over it, improving airflow. The keel bag and the ballonet were both connected via an intake at the tip of the keel. In addition, the tail of the balloon was connected to the keel, to which several tail cups were placed not only for stabilizing but to keep the keel straight. The tail cups were placed much closer to the balloon than on the Drachenballon. The rubber balloon girdle also differed from the Drachenballon slightly,as it wouldn’t be uniform all around the balloon, instead dipping slightly down near the front. The balloon would be made of rubberized and non rubberized fabric and filled with Hydrogen.

An Upson Kite Balloon in flight [US National Archives]
One of the Upson balloons preparing for flight at the Goodyear Plant in Akron. The other is visible in background hangar. The USAAC roundel is barely visible on the underside. [US National Archives]
BC-3 moored to the USS Huntington. [Wikipedia]
The Upson balloon BC-3 operating off of the USS Huntington. [navsource.org]
The Navy Design 1 balloon operating from the USS Oklahoma [NavalHistory.org]
Several Design 1 balloons are known to be built. The first would be built at the Goodyear plant in Akron in late 1915. While testing was going on in November, it was observed by officials from the Navy who were looking to increase the USN’s LTA (Lighter Than Air) fleet. The Design 1 balloon was accepted into service for the Navy on December 22th and shipped to the Pensacola Naval Air Station in Florida. The balloon would finally arrive on April 5th, 1916, along with a handful of Goodyear employees who helped with training. Only two days after arriving, the balloon would be damaged from heavy winds and would break from its mooring. The balloon would be repaired shortly after. Once repaired, the balloon was stationed aboard the USS Nevada and USS Oklahoma for testing. The balloon was found to offer increased visibility, but there were a number of reasons why using it from a battleship was a bad idea. The balloon was a very easy target, explosive due to its hydrogen gas (which often leaked), and gave away the position of the battleship. Inflating the balloon was also slower than what was expected. In some cases the balloon itself affected the maneuverability of the ship. It was noted that many of these issues could be fixed in the future, but no changes to this balloon are known to have occurred. Despite not performing well aboard a ship, the Navy continued to use the Design 1 balloon at the Pensacola Air Station for testing and training. Two more balloons were ordered, with the designations of CB-2 and CB-3 for the Navy. Both of these balloons are known to have been tested on the USS Huntington for evaluation. Even further on, the balloon CB-4 was ordered. It is unknown what type of balloon this was, whether Design 1 or 2.

Photo of a Design 1 balloon at Fort Omaha, Nebraska [Museum of the United States Air Force]
Aside from the Navy, the United States Army Air Service would also use two Design 1 balloons. One is known to be used for testing purposes. This balloon in particular has an extra set of stabilizing fins located a few feet in front of the regular stabilizing fins. Aside from testing, its service history is unknown. All that is known about it is comes from a US Army report evaluating it and a few photos to go along with said report. The report was very appraising of the type over the standard Drachenballon. The second known USAAS Design 1 balloon had an interesting history. From 1910 to 1919, the United States was in an armed conflict with Mexico on its border, known as the Mexican Border War. During this, many Army units would be stationed along the border. An Ohio National Guard Artillery unit was deployed along the border and stationed at El Paso, Texas in 1916. Accompanying the division was a Design 1 kite balloon gifted to the division by Goodyear. Along with the balloon, Ralph H. Upson himself would be assigned to assist in operations and training personnel for the balloon. The balloon would be used to observe Mexican forces moving near the border. Aside from its service in the War, the fate of this balloon is unknown. It was, however, the first observation balloon operated by the National Guard and is known to have been built shortly after the first Design 1 balloon.

Kite Balloon Design 2: All New

Design 2. This particular type would see several produced. [Google Patents]
The second design was also included on the June 20th patent and would greatly differ from the standard Drachenballon. In fact the only two similarities between the two designs would be their overall layout, other than this, the two designs are greatly different. The overall shape wasn’t cylindrical, but instead more round. Carrying over from Design 1 are Upson’s unique side fins, keel bag, and extended neck. The evacuation valve in the nose was moved upward and is near the top of the nose instead of directly frontally. Instead of having a balloon girdle, the ropes connecting the mooring line and basket were instead connected to individual rubber connection points around the main body of the aircraft. The pattern of the connection points is the same shape as the girdle on Design 1, with it arching down towards the front. The aircraft would also be stabilized by an internal ballonet. Specifications for this balloon do exist. It was to have an internal volume of 25,000 ft³ (707.9 m³). The maximum service ceiling would be 6000ft (1828.8 m). On the underside of two of the balloons, a United States Army Air Corps roundel is printed.

Goodyear would build at least four of this balloon type for training and testing. Two of these would be sent to the Fort Omaha balloon school in late 1916. Here they would be used in the training of the balloon corps alongside Drachenballons and spherical balloons. Two more of this type were photographed at the Goodyear Akron plant during a maneuver with other lighter-than-air aircraft. There is a chance these two aircraft are the same as the ones in Omaha but their overall appearance differs slightly. On one of the balloons is a box-like structure located at the side of the balloon. These are not present in the patent or on the other balloons and their purpose is unknown. It is possible these were some form of additional stabilizers but it is not confirmed. This type appears to be exclusively used by the USAAS.

The same excercise as before at Akron with all balloons now airborne. What appears to be a B-Class Blimp is in the background as well. [US National Archives]
On September 23rd, 1916, two pilots; Carl K. Wollam and Charlie Roth, were interested in one of the Goodyear Design 2 balloons then stationed at Dayton, Ohio. Both men, who were aircraft pilots, wanted to see how well the Upson balloon would do in untethered flight. It should be noted neither man had piloted a balloon before. The two would go up in the balloon, and then cut the cable. The balloon would go to an altitude between 5000 and 6000 ft (1524 and 1828.8 m) for a distance of over 120 miles (321.9 kilometers). The flight would last over 3 hours. The two wanted to head to Akron to land but their attempt failed and they were thrown off course for 70 miles (112.6 kilometers), finally landing in a farm near Circleville, Ohio. This would be the first free flight of a kite balloon in the US. Despite not being designed for this flight, the pilots said the balloon was hard to control, but overall performed well for the task.

Kite Balloon Design 3: Double Trouble

Side view of Design 3. This design was essentially two Design 2 kite balloon bodies sewn together. [Google Patents]
Frontal view of Design 3. [Google Patents]
The last of the Upson balloon designs was not included in the first patent document, instead being patented a few months later on November 9th, 1916. This 3rd balloon design differed greatly from most balloon designs of that era. Design 3 essentially was two Design 2 balloons sewn together side by side. Upson would call it a “Composite Balloon” in the patent. Each side of the balloon would have design features from Design 2. At the rear interior of the gas bag was an air-fed ballonet to keep the overall shape of the balloons intact when not fully inflated. The overall shape of the gas bag was changed, with Upson specifically mentioning that the bottom was flattened out to aid in aerodynamics. In each nose was an emergency gas escape valve to regulate the gas. On each side was one of Upson’s triangular stabilizing wings and at the rear was the keel bag. Instead of the tail cups that were common for kite balloons and used with the previous two designs, Upson would design a completely new tail stabilizing device. A large concave strip would connect to two ropes. Each rope would connect to an end of one of the gas bags. The strip would catch the wind like a parasail, stabilizing the balloon. Upson’s overall choice for the double body design was to greatly increase the stability and maximum height over contemporary balloon designs, with the idea that another body would assist in that regard considerably. The ropes connecting the basket were equally distributed to each of the balloon bags.

Despite Upson claiming it to be superior over his previous two designs, no composite balloon was ever built.

Too Late: The Caquot Arrives.

Two Upson Balloons are part of an exercise at the Akron Goodyear Plant, along with two Caquot Balloons. The photograph label incorrectly states all four balloons are Caquot R Types. [US National Archives]
From reports, the improvements done by Upson over the Drachenballon design did positively impact its design, making it much more stable in strong winds. A Design 1 balloon is known to have remained stable in 45mph winds. Despite the positive reception, there are still mentions that the Upson balloons design wasn’t perfect and it suffered still in terms of total stabilization compared to newer the newe balloons on the horizon, but overall it performed better than the Drachenballon in this regard. Upson’s balloon designs would have only just started their testing when the French officer, Albert Caquot, would create his superior balloon design in the later months of 1916. The design was created to completely fix the flaws of the Drachenballon. To fix the stability issues, two more air-inflated bags were placed at the rear of the balloon, totalling 3 stabilizers spaced 120 degrees apart from each other. The type was found to be completely superior over the Drachenballon and it quickly began replacing allied, and eventually German Drachenballons. Goodyear would later license build Caquot type balloons in 1918, for use by the American Balloon Corps. By their entrance in World War One, the US would only use Caquot types in combat operations in Europe. No further Upson balloons were built after 1917. Despite this, the two Design 2 balloons stationed at the Fort Omaha balloon school would continue to be used for training purposes until the closure of the school in 1919. It is unknown what fate befell the Navy operated kite balloons.

The Design 1 Balloon in operation at El Paso, Texas during the Mexican Border War. [texashistory.unt.edu]
An Upson Balloon at the Fort Omaha Balloon School. [US National Archives]
Due to a lack of information regarding these balloons, it is entirely possible, and extremely more than likely that more than the known amount of Upson balloons were built, but records and photos concerning the production of Design 1 and 2 types are severely lacking.

Upson would continue his work in the field of lighter-than-air aviation, working for Goodyear into the 1920s until he would leave the company to pursue his own vision of lighter-than-air aircraft. He would create the Aircraft Development Corporation, where he would design and build the metal-skinned airship ZMC-2 for the Navy. Upson would continue in the aviation industry all the way through the Second World War and into the 1950s.

A B-Class Blimp flies over the Goodyear hangar in Akron. One of the Upsons is being either taken in or out of storage. The second is visible in the hangar. [US National Archives]

Variants

*Note, the “Design” names are not the official designation, but named so here for simplicity.

  • Design 1– Heavily modified Drachenballon with improvements made by Upson. These include larger side stabilizers, the removal of the steering bag and the new keel bag for wind stabilizing. Five are confirmed to be built, with a possible 6th.
  • Design 2 – Completely original design that took the improvements from Design 1 and put them on a new design. Design 2 had a much more rounder body over Design 1. Four are known to have been built.
  • Design 3 – Composite balloon. Consisted of essentially two Design 2s sewn together. Reused all of the aforementioned modified side fins and keel bags. Would have a unique tail stabilizing parachute.

Operators

  • United States of America – The Upson types built were used by the balloon corps of the United States Army Air Corps and Navy.

Upson Kite Balloon Design 1 Specifications

Length 82 ft / 25 m
Diameter 22 ft / 6.7 m
Volumes 25,000 ft³ (707.9 m³)
Gas Type Hydrogen
Material Rubber-infused and non-infused cotton fabric
Maximum Service Ceiling 6000 ft / 1828.8 m
Crew 2 Observers
Equipment
  • Telephone

Upson Kite Balloon Design 2 Specifications

Volumes 25,000 ft³ (707.9 m³)
Gas Type Hydrogen
Material Rubber-infused and non-infused cotton fabric
Maximum Service Ceiling 6000 ft / 1828.8 m
Crew 2 Observers
Equipment
  • Telephone

Gallery

Illustration of Upson Balloon Design 1 by Ed Jackson

Credits

  • Written by Medicman
  • Edited by Blase & Mebble
  • Illustrated by Ed J.

Sources

LWF Model G

sweden flag USA (1918)
Multirole Aircraft – 3 Built

A side view of the LWF Model G-2. The firepower of the aircraft is evident, as the two of the four forward facing aircraft are visible near the engine, the double mount for the gunner, and beneath that the ventral gun is protruding. [US National Archives]
The LWF Model G was a multi-purpose two-man aircraft designed by LWF in 1918. While it was originally designed as a reconnaissance plane, it was redesigned to be equipped as a heavy fighter or bomber. Two aircraft were built for the United States Army Air Services for evaluation, where the craft reached 138 mph in its fighter loadout whilst carrying seven 7.62mm guns. Both prototypes would unfortunately crash, and with the First World War over, the Army Air Service no longer needed the aircraft. After the war, a third Model G was built as a mailplane.

History

The L.W.F. Engineering Company was an American aircraft manufacturer founded in 1915 by Edward Lowe Jr, Charles F. Willard, and Robert G. Fowler, with the company name being an acronym of their last names. The three had worked in the aviation industry before forming the company, with each using the experience they had learned to contribute to the company’s designs. In particular, the company was well known for its laminated wood, monocoque fuselages. Their first commercial product would be the LWF Model V, a two-seat reconnaissance/trainer aircraft for the United States Army Air Service. This would be their most popular aircraft, with over 100 being built before the end of the war. LWF would further experiment with the Model V, creating an improved prototype called the Model F. The Model F would replace the 135 hp (100 kW) Thomas-Morse engine of the Model V with a powerful 350 hp (261 kW) Liberty L-12 engine. This is claimed to be the first aircraft in the world to fly with a Liberty engine. The success of the Model F would inspire a successor design also using the Liberty engine, the Model G.


A pilot of the Model G-2 poses in front of the aircraft. [San Diego Air and Space Museum Archives]
The LWF Model G was drawn up in late 1917 as a high-speed reconnaissance/training plane using the aforementioned Liberty engine. It would bear a strong resemblance to the Model F, only differing in length and a few minor details. The first Model G aircraft was built in early January of 1918. On January 16th, the aircraft would take flight for the first time. The flight would start smoothly after takeoff but with a strong wind the aircraft was forced into a loop and entered into a tailspin, crashing into the ground and being completely destroyed. A second prototype would be constructed not long after the destruction of the first. This new prototype would be known as the Model G-1. The G-1 improved greatly upon the standard G model, but had more than its original reconnaissance and training role in mind. Instead of being solely a reconnaissance plane, the G-1 was envisioned as a capable two-seat fighter and light bomber. Each of the different configurations differed in terms of what they carried, whether it be weapons, bombs or extra armor. The G-1 was completed and flying by the summer of 1918, and its performance was superb. Test flights were done numerous times in front of both military and government officials to demonstrate the engine and its performance. By this point the Liberty engine had been upgraded to have 435hp (324.3 kW). Thanks to its more powerful Liberty engine, it was able to achieve incredible feats. In its fighter configuration, it was to carry an impressive armament of seven 7.62 machine guns. During a test flight, the aircraft was able to achieve a speed of 128mph (206 km/h) while carrying all of its weapons, fuel, and crew. In its bomber configuration, it would carry the same amount of guns, as well as additional armor and bomb racks.


The LFW Model F in flight, the predecessor to the Model G. Overall the two aircraft looked similar. [US National Archives]
Testing of the Model G-1 continued into late summer, when it was reworked into the Model G-2. The G-2 had several modifications to increase performance and handling. The control surfaces were fixed to be more balanced, and the ribs of the wings were doubled to improve structural stability. The improved design is noted as performing significantly better than the G-1. During a fully loaded flight , the improved Model G-2 went 10mph faster than the G-1, clocking in at 138mph. In comparison, the French Spad XIII fighter, one of the most highest performing production aircraft of the war, had the exact same top speed of 138mph (222 km/h) as the Model G-2, and it was a considerably lighter aircraft with only two machine guns. Testing of the G-2 continued through 1918 and showed excellent results. The aircraft was trialed in all three configurations and performance was recorded for each. On November 11th, the First World War came to an end. Despite there being no need for a fighter like the Model G, the type was still tested. A week after the end of hostilities, November 18th, the Model G-2 took off again. The aircraft however had taken off in dense fog, making visibility difficult. Due to the fog, the G-2 would crash and be totally destroyed. With the war over and both military prototypes destroyed, the pursuit of the Model G as a combat aircraft was over and LWF instead focused on the now-growing civilian market. There is mention on a photograph of the Model G-2 that an order for 600 of the aircraft was put out by the Army Air Service, but there is no mention of this in other sources. No production aircraft were built outside of the two military prototypes.

The mail-plane version of the Model G in 1919. Note the lack of armament and four bladed propeller. [US National Archives]
In 1919, a 3rd Model G was built as a mailplane. Little is known regarding this aircraft outside of a single photo. In the photo, which is dated April of 1919, long after both of the previous aircraft had crashed, an unarmed Model G is depicted. What is interesting about this version is that it had a four-bladed wooden propeller, whereas the previous models only had a two blade. Converting the Model G from a combat aircraft to a mailplane was a logical evolution. The Liberty engine would allow it to make quicker deliveries than its contemporaries, and it was able to carry up to 1,200 Ib (544.3 Kg) of cargo. Despite this advantage, only a single example was built. The fate of the mailplane is unknown, but it was likely scrapped years later once service was done, hopefully not meeting the same fate as the previous two Model Gs. No more work was done on the aircraft after the mailplane was finished.

Design


Complimentary image to the gunner showing the elevation, here the depression is shown. Note the ventral gun pointed straight down. [San Diego Air and Space Museum Archives]

Two of the forward facing guns are visible, one above the engine and one in the removed cowling area. [San Diego Air and Space Museum Archives]
The LWF Model G, and its upgrades, were a two-seat biplane multirole aircraft. The fuselage was constructed of laminated wood monocoque in a very aerodynamic cigar shape. It bore a resemblance to the sleek monocoque fighters of Germany, like the Pfalz D.III or Albatros D.V. In the nose, a Liberty L-12 engine was connected to a 2-bladed wooden propeller. At first the engine would be 350 hp (261 kW) but it was later upgraded to 435hp (324.3 kW) on the Model G-1 and onward. On the postwar mailplane, a four bladed propeller was used. The engine itself wasn’t fully covered, with about half protruding from the fuselage. On the nose were two radiators. Behind the engine sat the pilot. A windscreen protected the pilot from the wind and elements. Flight surfaces were controlled via two control sticks. The wings were two-bay and covered in fabric, with ailerons used on both pairs of wings. Beneath the fuselage was the landing gear. Two rubber lined wheels held the aircraft up on a basic landing gear frame. At the end of the fuselage was a landing skid. Behind the pilot sat the observer, who would handle observation duties in its basic configuration, and would serve as the gunner on the fighter and bomber configurations. His position was protected by a small windscreen as well. At the end of the tail were the vertical and horizontal stabilizers. The horizontal stabilizers were supported by two struts connected to the tailfin.

Another view of the gunner/observer position demonstrating the elevation of the double 7.62mm gun mount. [San Diego Air and Space Museum Archives]
On the Model G and reconnaissance/training versions of the G-1 and G-2, no armament would be used. For armament on the fighter and bomber versions of the G-1 and G-2, a total of seven 7.62mm machine guns would be used; five Marlin and two Lewis guns. Two would be built into the fuselage, forward facing. Two more would also be forward facing but would be mounted on the engine itself. The remaining three would be operated by the gunner with two on a movable mount and the last protruding from the underside of the belly. The double mount was highly mobile and offered a great range of fire for the gunner to defend the aircraft. Four bomb racks capable of carrying up to 592 Ibs (268.5 Kg) of bombs were equipped for the bomber configuration. The bomber configuration also carried 66 Ib (30 Kg) of armor for protection of the crew/internals.

The aircraft was painted overall in two tones. From above it was painted a dark brown to blend in with the ground, while from below it was painted a sky blue. The tailfin was painted in the signature red-white-blue found on other American combat aircraft. Two Army Air Service roundels were painted on the upper and lower wings.

Conclusion

View of the pilot and gunner/observers position in the aircraft. Note the small windscreens. [San Diego Air and Space Museum Archives]
The LWF Model G was an impressive aircraft all around, being able to carry a large arsenal of weapons while maintaining a high speed for an aircraft of its stature. Unfortunately, despite being so successful, the aircraft wasn’t adopted for production and with the loss of both prototypes, the military was possibly wary of the aircraft despite its success. With the war over, a need for the type wasn’t necessary, as the aviation industry moved into a more civilian-oriented market.

In the time frame of its development, even if it had been selected for production, it was so late in the war it likely wouldn’t have seen combat. Had it however, the LWF Model G would have been a truly terrifying foe to enemy aircraft, thanks to its powerful armament and fast top speed. With its seven 7.62mm machine guns, it carried more guns than several bombers of the time period.

LWF would continue designing their own aircraft post-war, most of them mailplanes like the Model G, but they too would never catch on. LWF would also license build aircraft from other companies during the 1920s. This wouldn’t last long, however, as the company would file for bankruptcy and become defunct in 1924.

Variants

  • LWF Model G – Prototype, unarmed. Equipped with Liberty V-12 engine. Crashed on first flight. One built.
  • LWF Model G-1 – 2nd Prototype, multirole. Improved upon the Model G and could be configured to do reconnaissance, dogfighting or bombing. Carried an impressive seven 7.62mm machineguns. Increased engine performance.
  • LWF Model G-2 – Modified version of the G-1. Had changes made to the design to increase handling and performance.
  • LWF Model G Mailplane – Unarmed mailplane version of the G-2. 1 built after the war.

Operators

  • United States of America – The LWF Model G was designed for use by the Army Air Service. Despite its success, the end of the war made the aircraft no longer needed. The 3rd Model G served as a mailplane.

LWF Model G-2 Specifications

Wingspan 41 ft 7 in /12.5 m
Length 29 ft 1 in / 8.8 m
Height 9 ft 4 in / 2.7 m
Wing Area 515.54 ft² / 47.9 m²
Engine 1x 435 hp ( 324.3 kW ) Liberty V-12 inline engine
Propeller 1x 2-blade 9 ft 7 in / 2.7 m wooden propeller (1,800 RPM)
Fuel Capacity 90 US Gal / 340.6 L
Water Capacity 14 US Gal / 53 L
Oil Capacity 6 US Gal / 22.7 L
Weights
Empty 2,675 lb / 1213.3 kg
Fighter 4,023 lb / 1824.8 kg
Bomber 4,879.5 lb / 2213.3 kg
Climb Rate
Time to 10,000 ft / 3048 m (Standard) 7.28 minutes
Time to 10,000 ft / 3048 m (Fighter) 9.18 minutes
Time to 10,000 ft / 3048 m (Bomber) 14.15 minutes
Maximum Speed 130 mph / 209.2 km/h at 10,000 ft / 3048 m

138 mph /222 km/h at Sea Level

Landing Speed 50 mph / 80.5 km/h
Endurance 4 hours
Maximum Service Ceiling 24,000 ft / 7315.2 m (Model G)
Crew 1 Pilot

1 Observer/Gunner

Armament
  • 5x 30 Caliber (7.62mm) Marlin machineguns
  • 2x 30 Caliber (7.62mm) Lewis machineguns
  • 4 bomb racks (carrying capacity 592 Ib / 268.5 Kg)

Gallery

Illustration by Ed Jackson

Credits

  • Written by Medicman
  • Edited by Henry H. and Ed J.
  • Illustrated by Ed Jackson

Sources

  • Jane, F. (1969). Jane’s all the world’s aircraft 1919. New York: Arco Pub.
  • Green, W. & Swanborough, G. (2002). The complete book of fighters : an illustrated encyclopedia of every fighter aircraft built and flown. London: Salamander.

DFW Floh

German Empire FlagGerman Empire (1915)
Fighter – 1 Built

The strange looking DFW T28 Floh. [DFW Aircraft of WWI]
The DFW T28 Floh (Flea) was an early biplane fighter designed for use by the German Empire. To get an edge over then current monoplane fighters, the T28 was designed with aerodynamics and speed in mind. The result was an aircraft that looked straight out of a cartoon. Despite its appearance, the aircraft performed well during testing, maxing out at 112mph (180 km/h). Although its speed was good, its large body and the placement of the wings reduced visibility for the pilot, making landings with the craft difficult. This was enough for officials to decline production of the type despite its respectable top speed.

History

In times of emergent technology, it goes without saying that many new endeavors are tested out. Many of these may seem strange to us now, but something odd looking to us could have been revolutionary for the time. This was no exception for aircraft in the First World War. Many different ideas were tested in the name of advancing aerodynamics. Some of these would end in blunders while others would be influential to aircraft design. A curious case of attempted aircraft advancement was the DFW T28, a plane that pushed records for speed, while looking downright comedic.

A frontal view of the Floh during taxxiing, the pilot had to stand up to even see while doing this. DFW C.Is are visible in the background. [DFW Aircraft of WWI]
The Deutsche Flugzeugwerke (DFW) was a German aircraft manufacturer formed in 1910 that license-built French aircraft before the war. During the early years of the First World War, they would design and produce a number of two-seater aircraft types, both armed (C-Type) and unarmed (B-Type). No work was done on a fighter aircraft by DFW at the beginning of the war. Fighter aircraft weren’t as common by this point in the war as they would soon be known, with most types in production being German Eindecker (monoplane) designs like the Fokker E.I. Very few actual biplane fighters (D-Type) had been developed at this time, aside from a prototype or two. Despite this, the Eindecker showed its effectiveness and led to a period of time in 1915 where the air was dominated by the Germans, known as the “Fokker Scourge” to the allies.

Herman Dorner with his Floh. [DFW Aircraft of WWI]
In mid 1915, a new head engineer, Dipl-Ing (Engineer) Hermann Dorner was appointed at DFW. Dorner was a German early aviation pioneer in the 1900s and 1910s, building gliders and powered aircraft alike. He had formed his own aircraft company in 1910, but due to poor business decisions on Dorner’s end, the company would be liquidated in 1913. He would go on to work as a teacher at the Adlershof flight school, as well as working for the Deutsche Versuchsanstalt für Luftfahrt (German Research Institute for Aviation) before finally being employed by DFW during the war. After joining DFW, Dorner began working on a new fighter aircraft project. Dorner took issue with the Eindeckers in service at the time, particularly relating to their speed. Despite their effectiveness, all of the Fokker Eindeckers built (E.I-E.IV), could not attain a speed faster than around 87mph (km/h). With newer Allied machines on the horizon, this speed wouldn’t give the Eindeckers an edge forever and a replacement was needed.

Dorner had speed in mind with his fighter design. His vision had the aircraft streamlined for aerodynamic flow. Overall the aircraft would be small and light in construction to reduce weight. Work began on a prototype of Dorner’s fighter in late 1915 at DFW’s facility in Lubeck-Travemunde. This facility primarily served as a flight school for DFW, and wasn’t their main factory. The construction of the aircraft, now known as the DFW T28 Floh, was supervised by Theo Rockenfeller at the plant. The final T28 looked like it flew straight out of a cartoon, possessing a very tall fuselage with small wings. This proportional difference made the aircraft appear more like a caricature than a combat aircraft of the time period. Despite its design, the aircraft was still designed for speed, and would have a 100hp (74.5kW) Mercedes D I engine, which was completely enclosed in the fuselage. Armament would be a single machine gun mounted in front of the pilot. The T28 would take flight shortly after its construction, but the exact date is unknown. The design choices of the aircraft to make it fly faster worked well, as it was able to achieve a top speed of 112 mph (180 km/h), which was extremely impressive for the time period. However, its design wasn’t perfect and the choices made to improve speed negatively affected other aspects of the aircraft, in particular, its landing characteristics. The tall profile of the craft, the location of the upper wing, and the placement of the pilot’s position, gave him a superb view above the plane but was severely restricted frontally and below. The prototype Floh would be damaged due to this reason upon landing on its first flight, due to the pilot misjudging his height, as well as having a fast landing speed. This issue also affected takeoff, as the high placement of the pilot required him to stand up during taxiing to see. The design was reworked a few times after its first flight, mainly with improving the tail surfaces. Despite achieving the speed Dorner wanted, the military officials showed little interest in the design, with some sources citing that it was just too fast for the military. Further work on the aircraft was stopped after this. Exactly what happened to the aircraft after being declined for production is unknown, whether it was simply scrapped or if it was continually used at DFW’s facilities for training and testing are possible theories. Many prototype German aircraft of the First World War would go on to serve as trainers for their various companies once production declined. The facility the T28 was built served as a flight training school for DFW after all.

Design

Rear view of the aircraft. [DFW Aircraft of WWI]
The DFW T28 Floh was a biplane fighter designed in 1915 to supersede then in use Eindecker fighters. It had a length of 14ft 9in (4.3 m), a wingspan of 20ft 4in (6.2 m) and a height of 7ft 6in (2.3 m). The aircraft had a tall, flat sided fuselage constructed of wood. The fuselage would be sleek and rounded in design to reduce drag. Buried in the fuselage was a 100hp (74.5kW) Mercedes D.I engine. The aircraft had a large wooden propeller, with a relatively small landing gear mounted far forward with two wheels almost at the nose of, accompanied by a landing skid at the end of the tail. The short wings were fabric covered with wooden ribs. The wings themselves were single bay, meaning only one pair of support struts between the upper and lower wing. The upper wings were placed in a way that restricted the pilot’s vision downward and forward. Behind the wings and engine in the fuselage sat the pilot. Two cutouts were made into the left side of the fuselage for the pilot to climb up into the cockpit. Toward the rear of the fuselage the tail would taper. At the end were the horizontal and vertical stabilizers. The vertical stabilizer itself acted as the rudder and was completely movable. The elevators were originally the same width as the horizontal stabilizers but these were modified later into testing to be wider to increase performance.

For armament, a single synchronized machine gun was fitted in front of the pilot.

A side view of the Floh, its strange proportions are clearly evident. [DFW Aircraft of WWI]

Conclusion

The T28 Floh was a very interesting concept for a fast fighter at a time where biplanes weren’t yet used in such a role in German service. Its design choices might seem strange now, but they meshed together to create a truly fast aircraft of the time. The design however, was troubled by problems that would see it fail to enter widespread production, and eventually more conventional biplane fighter designs would enter service less than a year after the Floh was built. DFW would eventually produce several conventional biplane fighter prototypes later on in the war in 1917 and 1918, but these all performed very poorly. Aside from having structural problems and a poor field of view, the last of these, the D.II, was in fact slower than the Floh.

Dorner would continue working for DFW designing aircraft. His next project after the Floh would be the much more successful DFW R.I Reisenflugzeug (Giant Aircraft), which would first fly in 1916. Dorner, however, wouldn’t stay with the company to see the completion of this project and its success, as he would move to Hannover Waggonfabrik AG in October of 1916 as their chief designer. Here he would design several successful two-seater aircraft, the CL.I through CL.IV, which saw widespread use during the war. He would survive the war and continue working on civil air projects.

Interestingly, this wouldn’t be the only type of aircraft to share this strange design idea during the war. The Austro-Hungarian Lohner Type AA fighter of 1916 also had similar proportions, with a very tall body and small wings to increase speed. This aircraft would have poor flight performance and would be heavily reworked to resemble the more standard biplanes then entering service.

Variants

  • DFW T28 Floh – The T28 was a small fighter designed to outperform Eindecker aircraft in terms of speed. 1 was built and tested.

Operators

  • German Empire – The T28 Floh was designed for use by the German Empire but wasn’t adopted for service.

DFW T28 Floh Specifications

Wingspan 20 ft 4 in / 6.2 m
Length 14 ft 9 in / 4.3 m
Height 7 ft 6 in / 2.3 m
Wing Area 162 ft² / 15 m²
Engine 1x 100 hp (74.5 kW ) Mercedes D.I engine
Propeller 1x 2-blade wooden propeller
Weights
Empty 926 lb / 420 kg
Loaded 1,433 lb / 650 kg
Maximum Speed 112 mph / 180 kmh
Crew 1 pilot
Armament
  • 1x Machine Gun

Gallery

The DFW Flea – Illustration by Carpaticus

Credits

  • Written by Medicman11
  • Edited by  Ed J. and Henry H.
  • Illustrations by Carpaticus

Sources

  • Green, W. & Swanborough, G. (2002). The complete book of fighters : an illustrated encyclopedia of every fighter aircraft built and flown. London: Salamander.
  • Herris, J. (2017). DFW Aircraft of WWI : a centennial perspective on Great War Airplanes. Charleston, SC: Aeronaut Books.

 

Linke Hofmann R.8/15

Linke-Hofmann R.I

German Empire Flag German Empire (1917)
Heavy Bomber Prototype- 4 Built

Linke-Hoffman R.I 40/16 side view. [The German Giants]
The Linke-Hofmann R.I was an experimental heavy bomber developed by the German Empire in 1917. The R.I would be unique, as one of the first prototypes to be constructed mostly out of a translucent material known as cellon, with the idea that it aircraft would be harder to spot. Unfortunately for the designers, cellon is highly reflective and ended up making the craft a much more noticeable target. After the failure with cellon, more work continued on the prototypes, now of normal fabric skinned construction. Due to poor performance caused by several design choices, the type was not mass produced and was subsequently cancelled.

History

A drawing of the R.I done by Linke-Hoffman. Notice the 3 gun positions. [German Aircraft of Minor Manufacturers Volume II]
During times of war, it is not too uncommon for companies, factories and other industrial firms to be drawn into the war effort and end up producing materials that are as far away from their specialty as possible. Sometimes, this can end in a surprise success or a total blunder. This was no exception in the first World War for the German Empire. The concept of the military airplane had seen its first successes early in the war,and the need for aircraft was on the rise, but a major problem came in the fact that there were few dedicated airplane companies in Germany at the time. Thus, the Empire would call upon many of its industrial manufacturers to begin designing and producing aircraft, even if they were not familiar with working in that field. Linke-Hofmannn would be one such company.

3-Way drawing of both versions of the R.I [The German Giants]
Linke-Hofmann, sometimes misspelled Linke-Hoffman, was founded in 1912 and was a manufacturer of railroad components, mainly locomotives and rolling stock. In early 1916, the company would enter the field of aviation by using their factories for aircraft repairs and for license built construction of aircraft. Some aircraft types they built under license were the Roland C.IIa, Albatros C.III, Albatros C.X and the Albatros B.IIa. At the same time, Linke-Hofmann was also awarded a contract to produce their own aircraft. The first of their home built aircraft would be an R-Plane type or Riesenflugzeug (giant aircraft), which was the designation given to the largest multi-engine bomber aircraft of the Empire. Linke-Hofmann’s R.I design would be a strange looking machine. Its fuselage was short and tear-drop shaped to streamline the design . Each pair of wings would be mounted extremely high and low on the fuselage in an attempt to increase lift. Four internal engines would be connected to four propellers, two in pusher configuration and two in puller configuration. Most interestingly, a majority of the tail of the aircraft would be made out of a material called Cellon. Cellon (Cellulose Acetate) is a translucent, plant-based material similar to film that was tested on several German aircraft in WWI, swapping out the normal fabric. The idea behind having the airframe covered in such material was that it was thought to make the aircraft harder to see. In addition to the Cellon, the R.I also had a very large cockpit with a number of windows to give much better visibility. Many of these design choices were made as it was thought they would make the design perform better in the long run, but they would ultimately lead to its downfall.

The R.I 8/15 under construction. The Cellon is clearly visible [German Aircraft of Minor Manufacturers Volume II]
The Cellon tail of 8/15 [German Aircraft of Minor Manufacturers Volume II]

The completed R.I 8/15

Work began on the first R.I in the later months of 1916 under Chief Engineer Paul Stumpf, who previously worked for the AEG aircraft works. The first R.I was completed in early January of 1917 and was named the R.I 8/15. Testing of the aircraft began, but its first flight was delayed due to the unconventional steel tires coming apart during taxiing attempts. Improved versions of the tires were built that were much more stable than the first. Shortly after, the R.I 8/15 would fly for the first time from the Hundsfeld Airfield near Breslau, but the exact date is unknown. Early test flights showed the design was flawed and as time went on, performance began to suffer, although the exact reason was not known. Noticeably, the wings seemed to be the root cause of the lag in performance. The aircraft’s controls would occasionally become heavy and unresponsive, resulting in a partial loss of control. To amend this to some degree, several additional struts were added to the main wings, but this would not save the aircraft from disaster. On May 10th 1917, during its 6th test flight, two of the wings on the R.I 8/15 would collapse mid-flight and the aircraft would slam into the ground at full speed. Remarkably, all of the crew of the aircraft would survive, but the airframe itself would be destroyed in a blaze of fire caused by the crash. Unfortunately, 1-2 ground crew would die from the flames while trying to put them out.

The destruction of the 8/15 would force Linke-Hofmann to look into designing an improved model. At this time, many of the design choices Linke-Hofmann made with the aircraft would show how ineffective and even detrimental they were. The wings themselves were the root cause of the crash, as they were not stable nor very well supported. The Cellon material, which was thought to make the aircraft invisible, actually ended up doing the exact opposite, as the material was highly reflective, especially while the aircraft was airborne. Cellon itself also was not the most stable material to make most of the tail section of the aircraft out of, as the material itself could easily bend and warp during rough weather. Even when the material worked as needed, it aged to a yellow color that would remove the translucency. Even before the aircraft took flight, Linke-Hofmann would be criticized for making an aircraft mostly out of the little tested material. In order to amend these issues, the Idflieg ,,the Imperial organization that handled aircraft development, ordered several improved models to continue the development of the type, as the 8/15 had crashed before most of the evaluation had completed. Linke-Hofmann would then begin construction on the improved models, serial numbers 40/16 through 42/16. These improved variants on the R.I attempted to fix many of the issues that plagued the 8/15. The wing structure was redesigned to be significantly more stable, with additional struts forming an overall better design. Most of the Cellon in the aircraft had been replaced with standard fabric, with only a few small patches of the tail containing it, likely to serve as observation windows. The landing gear was also heavily improved, something the Linke-Hofmann Engineers were quite proud of. Lastly, the new airframe was also built to accommodate three positions for machine gunners. These small improvements mended these few issues, but the aircraft’s design was still riddled with flaws.

40/16 in flight. [German Aircraft of Minor Manufacturers Volume II]
Details regarding the history of the improved variants are, unfortunately, not well known. It is unknown exactly when the R.I 40/16 first flew or when it was even built, but the handling of the aircraft had been significantly improved upon over the 8/15. Maneuverability was especially stated to be superb compared to the older model, but its general performance was still considered to be unsatisfactory. Landing the aircraft was stated to be terrible due to the high location of the pilot and the slow landing speed.

The crashed 40/16 after a taxiing accident. [German Aircraft of Minor Manufacturers Volume II]
During one landing attempt while testing the 40/16, the test pilot misjudged how close he was from the landing strip due to the height of the aircraft and damaged the landing gear. Due to the teardrop shape of the aircraft, the entire thing went nose down into the ground, crushing the entire cockpit section. It is unknown if anyone was killed or injured during the crash, but no attempt was made to repair the aircraft afterwards and it was likely scrapped. Details on the 41/16 and 42/16 are even more lacking. Some sources claim they were never completed, while other sources state they were complete and ready for inspection before the program concluded. 41/16, in particular, has virtually no information or photos of the aircraft, but two photos exist of a finished 42/16 sitting outside the Linke-Hofmann factory in Breslau.

Design

A direct frontal view of 40/16. The unique engine-propeller arrangement can be seen clearly, as well as the tall profile of the aircraft. [German Aircraft of Minor Manufacturers Volume II]
Pilot’s position of the R.I [German Aircraft of Minor Manufacturers Volume II]
The Linke-Hofmann R.I was a four engined R-Type aircraft with a large teardrop-shaped fuselage covered in fabric. The fuselage was designed in such a “whale” configuration to contain its engines and reduce drag, but this was only ever tested on smaller aircraft and likely detrimentally affected the R.I. The front of the aircraft was divided into three different floors. The first floor contained the pilot’s position and the wireless station for communication. This floor had extensive glasswork to provide a good view around the front of the aircraft. The large amount of glass used in the cockpit only helped during clear weather as, during rain or if illuminated by a searchlight, it would cause visibility to suffer from light reflection and condensation.

Engine Room containing the four Mercedes D.IVa engines

The second floor contained the four Mercedes D.IVa engines. The third and lowest level contained the bombardier’s station and four internal fuel tanks. The tail of the R.I differed between the two variants. On the earlier 8/15, the tail was composed mostly of Cellon, while on the later 40/16, it was covered in fabric. The tail of the aircraft had a biplane horizontal stabilizer and three vertical fins for vertical stabilizers. The two additional fins vertically and the upper wing of the horizontal stabilizers were used as control surfaces on top of the conventional placement of said control surfaces. The wings of the aircraft were placed high and low on the aircraft, with the fuselage height directly separating each wing. Only the upper wings had ailerons fitted. The wings on the 8/15 were actually the lightest of any R-Plane built, which was a likely factor in its crash. The 40/16 had improved and more stabilized wings compared to its predecessor. The aircraft originally was planned to have four propellers, two in tractor and two in puller configuration but this design aspect doesn’t appear to have ever left the drawing board. Instead, only two were used in tractor layout. The engines powered the propellers in a very unique way. Each side of the aircraft had one propeller, which was connected to a pair of engines via outrigger frames and powered through a drive shaft connected to a bevel gear. Each pair of engines powered one side. This was done so that, in the event one of the engines was disabled through either malfunction or combat, the propellers would still have power going to them. A disabled propeller would begin windmilling, or rotating without power, and cause significant drag. On larger aircraft, this would seriously alter performance and cause the aircraft to lose speed and airflow due to drag. This complex system was put into place to prevent this from happening.

R.I 40/16 outside of the Linke-Hofmann factory. [The German Giants]
No armament was carried aboard the R.I, but several proposals were made. Three machine-guns of unknown type and caliber were to be located at three positions around the aircraft. Two were located on the tallest point of the body, with one facing forward and one facing backward to cover all angles. The third gun position was located in the middle of the aircraft, with two open windows on each side to provide maximum firing range to each side. Given it was an R-Plane, the R.I would have used bombs had it entered mass production, but it’s loadout was never addressed, since the type was considered a failure.

Conclusion

The only two images of the Linke-Hoffman R.I 42/16 near the Linke-Hoffman factory [The German Giants]
With the destruction of two aircraft and the type severely underperforming to expectations, the Idflieg lost their faith in Linke-Hofmann’s R.I program and it was promptly cancelled before January 1918. The 41/16 and 42/16 were most likely scrapped before the end of the war. The type was riddled with flaws from the beginning due to the strange decisions made by Linke-Hofmann in designing their first aircraft. Despite their failure at the start of their aircraft manufacturing career, Linke-Hofmann would use the experience learned from the R.I to create an improved and much more traditional looking R-Plane aircraft, the R.II.

Variants

  • Linke Hofmann R.I 8/15 – First version of the R.I. This version’s tail and rear fuselage were constructed of the transparent material Cellon.
  • Linke Hofmann R.I 40/16 – Improved version of the R.I 8/15. This type had many slight modifications, such as a better wing structure, a more stable landing gear, and was no longer constructed of Cellon. 3 of this type were built.

Operators

  • German Empire – The Linke-Hofmann R.I was an R-type aircraft meant to be used in the heavy bomber role for the German Empire. However, due to poor performance, the type was never mass produced or sent into service.

Linke-Hofmann R.I 40/16 Specifications

Wingspan 108 ft 11 in / 33.2 m
Upper Chord 16 ft 5 in / 5 m
Lower Chord 15 ft 5 in / 4.7 m
Length 51 ft 2 in / 15.6  m
Height 22 ft / 6.7 m
Wing Area 2851 ft² / 265 m²
Engine 4x 260 hp ( 193.9 kW ) Mercedes D.IVa engines
Weights
Empty 17,640 lb / 8,000 kg
Loaded 24,969 lb / 11,200 kg
Climb Rate
Time to 9,840 ft / 3,000 m 2 Hrs
Maximum Speed 81.8 mph / 130 km/h 
Crew 4-5 crewmen
Armament
  • 3x planned machine guns of unknown type.

 

Gallery

Illustrations by Ed Jackson

The Linke Hofmann R.8/15 – Note the extensive use of transparent cellon for the aft portion of the fuselage.
The Linke Hofmann R.40/16
3-Way drawing of both versions of the R.I [The German Giants]

Credits

  • Written by: Medicman11
  • Edited by: Stan L. & Henry H.
  • Illustrations by Ed Jackson

Sources

  • Kosin, Rüdiger. The German fighter since 1915. Baltimore, Md: Nautical & Aviation Pub. Co. of America, 1988. Print.
  • Herris, Jack. German Aircraft of Minor Manufacturers In WWI Volume 2: Krieger To Union, Columbia, SC: Aeronaut Books, 2020. Print.
  • Haddow, G. W., and Peter M. Grosz. The German giants : the German R-planes, 1914-1918. London: Putnam, 1988. Print.

LFG Roland C.II

German Empire Flag German Empire (1915)
Reconnaissance Aircraft – 267 Built

A Roland C.II in flight. [Roland Aircraft of WWI]
The Roland C.II was a reconnaissance aircraft built by LFG Roland in 1915 as a new and innovative design. The type would see widespread use by the German Empire and, thanks to its highly advanced form, became the fastest and most maneuverable of its type when it was introduced. Overall improvements on the aircraft were done throughout the war to strengthen its performance, but by the end of the war, much more advanced aircraft had been deployed and made the Roland obsolete. The C.II was relegated to a training aircraft until the end of the war, when all were scrapped.

Development

In early 1915, the Luftfahrzeug Gesellschaft (L.F.G.), also known as Roland to avoid confusion with a similar sounding design firm, began building several Albatros aircraft under license. These aircraft were the Albatros B.I, B.II and the C.I, which were considered some of the most advanced in terms of aerodynamics for the current times. Around the same time, Dipl.-Ing. (Engineer) Tantzen would join Roland as chief designer. With Tantzen as the chief designer and their experience gained from license-building aircraft, Roland would begin designing a new and original plane, the C.II.

Work began on the C.II (C-types were two-seat armed aircraft) sometime in mid 1915. The C.II would have a very rounded, aerodynamic fuselage design, similar to the Albatros D.III fighters of the following year. The fuselage was created in a unique way, called Wickelrumpf (Wrapped body). Wickelrumpf involved using layers of veneer strips that were wrapped around a simple wodden frame. The shells created were then glued together around the wooden frame of the C.II and strengthened with fabric, making a very streamlined and sturdy fuselage. This whole process was an early attempt at monocoque construction, which involved having a shell built around a frame. However, the Wickelrumpf technique on the C.II used two stringers for the frame, a feature true monocoque aircraft don’t have. Like the fuselage, the wings were also designed to be very aerodynamic. Instead of having the wings connected with multiple spars and bracings, as was common with aircraft of the time, the wings of the C.II would be connected via a single wooden strut in a single bay wing.

The C.II prototype on October 24th, 1915, only hours before its disastrous test flight.

Before a prototype was completed, a C.II fuselage was mounted on a railcar for aerodynamic testing and other experiments. The train would swiftly go down a straight track between the cities of Schoneberg and Juterbog and data would be recorded on the aircraft. The first prototype C.II was completed in October of 1916 and its first test flight would happen between the 24th and 25th. This test flight would end in misfortune, with the D.III engine failing mid flight, resulting in a crash and subsequent damage to the aircraft. The prototype was quickly repaired and flying, with a second prototype completed soon after. In the test flights, it was found that, thanks to its aerodynamic design and powerful D.III engine, the C.II’s speed was extraordinary, surpassing all of the current C-type aircraft then in use. With such a feat, a production batch of 50 aircraft were ordered on December 23rd, 1915. Testing continued and it was found that the wing cells were slightly unstable, so an additional drag wire was added for stabilization. After this change was added to the design and prototypes, production of the type continued and, by March 7th, 1916, the first of the production aircraft were ready to be sent to the front.

Design

The last production batch of C.IIs [Roland Aircraft of WWI]
The interior frame of the C.II. This would be covered by the Wickelrumpf shells. [Roland Aircraft of WWI]
The Roland C.II was a two seat observation biplane. The body of the C.II was aerodynamic in shape and had a plywood frame, with the outer shell created via Wickelrumpf and made of veneer strips glued together and supported with fabric. Wickelrumpf produced a semi-monocoque fuselage. The body would have two seats, one for the pilot and one for an observer. On the sides of the fuselage were two pairs of celluloid windows for the observer to use. On several occasions, flight crews would paint curtains onto them. The windows themselves were modified by the crews to open by sliding backwards or downwards, but this was not a standard feature. Above the pilot’s position was a roll cage designed to prevent the pilot from being crushed in the event of a roll over on the ground. The initial design of the cage was circular but, once the frontal Spandau was added, the cage had to be redesigned and became more triangular in shape. No measure was given to protect the observer. The C.II used a Mercedes D.III engine mounted in the nose and driving a wooden propeller. The first two cylinders were exposed to the elements. The area surrounding the engine was the only part of the aircraft to have metal plating. Certain plates were hinged to allow for maintenance to the engine. For exhaust, the initial models used the “ocarina” style pipes, but later models would change between the ocarina style and others. The engines would have two ear radiators on each side of the craft. These protruding radiators obstructed airflow and caused drag. The tailfins were wooden and fabric covered. The control surfaces were made of steel tubes and covered in fabric. The tailfin was enlarged after the June 1916 batch to increase stability.

A sight all too common of the C.II. Due to its poor downwards visibility,
Pilots had trouble landing the aircraft. [Roland Aircraft of WWI]
The wings of the aircraft were made of wood and covered in doped fabric as was conventional at the time, with the control surfaces being made of steel tubes and also covered in doped fabric. The ailerons were originally in the lower wing but, starting with the C.IIa, these would be located in the upper wing. The wings themselves were the exact same length, shape and chord. Unique I-struts connected the wings together. The I-struts were of plywood construction and would have interior bracings in the shape of an X. The C.II would have a landing gear connected to the aircraft with v-shaped connectors. At the rear of the aircraft would be a landing skid.

Mid Production C.II [Roland Aircraft of WWI]
For armament, the C.II initially only had a single Parabellum 7.92 mm for the observer to use. After the first 50 aircraft, a forward firing synchronized Spandau 7.92 mm was added for the pilot. If needed, four bomb racks could be fixed to the underside of the wings to carry small bombs. The aircraft also carried several flares. A radio could also be carried on the aircraft and used by the observer. This was powered by an airscrew-powered dynamo located near the landing gear.

The “Walfisch” In Action

Otto Czernak’s C.II. This aircraft was modified with a rudimentary machinegun mount and an input system for the observer to request certain flight movements. [Roland Aircraft of WWI]
The Roland C.II arrived on the frontline in late March of 1916 and the effort put into its aerodynamic design was noted almost immediately. The C.IIs were the fastest aircraft used by the Luftstreitkräfte (German Air Force) at their introduction, outpacing all of their operational aircraft and almost all opposing Allied aircraft, only being superseded by a handful of Allied fighters. Because of its impressive speed, the Roland C.II was flown in special groups, as other two seater C-type aircraft could not keep up with the type. The Roland C.II was initially used as a reconnaissance plane, with the second crewman acting as the observer, but its speed allowed it to be used on escort duties as well. Despite its good speed, however, the C.II was not without its flaws. In the observer role, thanks to the crewmen being seated above the body, visibility above the plane was superb, but visibility in front of the aircraft was lacking, and visibility beneath the aircraft was poor. An attempt to fix this early on, before production began, was placing cutouts in the base of the wings, but this solution still do not provide adequate visibility. This flaw became fatal later on, once enemy pilots learned of this massive weak spot, as they would now dive beneath a C.II, then fly upwards towards it, firing their guns while the Roland crew had no means of detecting threats from that angle. This visibility issue also made landings especially dangerous, as the pilot had difficulty calculating how close the ground was. Aircraft of the time were well known to have difficulty upon landing, but the Roland C.II exhibited worse than average landing performance due to the visibility issue. Maneuverability and stability of the C.II was also lackluster at times and would need improvement.

Initially, the Roland C.II only had a single Parabellum 7.92 mm machine gun for the observer to use. The first fifty of these aircraft would have this small armament. Many of the pilots found this weak armament lacking. One pilot in particular, Lt. Otto Czernak of Schusta 28, would fix this issue on his own. He would rig up a forward firing apparatus for another Parabellum machine-gun that would allow the pilot to fire. Due to the propeller and machine-gun not being synchronized, the rig placed the gun well above the rotating radius of the propeller, making the rig very tall. Czernak’s own plane was modified in other ways as well, having a unique input system for his observer that would allow the 2nd crewman to communicate to Czernak to maneuvering instructions. No other C.II would have this system. After the first fifty aircraft, all C.II’s would have a synchronized Spandau machine-gun for the pilot to use. This gave the C.II some dogfighting ability, which is how it would end up being used for escort duties, along with its excellent speed.

A Linke-Hoffman produced C.IIa(Li). This particular aircraft has bomb racks installed. [Roland Aircraft of WWI]
At some point, either during its career or while it was still being developed, the C.II was given the unofficial nickname of Walfisch (Whale). The origin of this name has been told many times but there is no concise point that has been confirmed. The most common of these origins is said to have come while it was still in development, from a German official observing the type. Another reason could have been its overall round shape and how the early models were painted a silver-white color. Nonetheless, the name stuck around. The name Walfisch did not seem to have any negative connotation for its pilots, as many of them would paint fish or shark faces on their aircraft. Some would even paint scales. The previously mentioned Otto Czernak would paint a fish face onto his aircraft. This tradition was seen throughout its lifespan, even after the later two-toned camouflage models were introduced with green and brown paint.

A production of 24 aircraft, after the initial batch, with the modified machine-gun was ordered in March of 1916. Another batch of 45 aircraft was ordered in April. However, the batch of Roland C.IIs after this set would aim to fix many of the stability issues found with the aircraft in the field. The tailfin was enlarged to improve flight performance. The wings were shortened and the I struts were moved inward to compensate for the wing flexing. These made the wings much more structurally sound. This reworked design of the C.II was known as the C.IIa and testing of the type began in April and May of 1916. The type would be sent to the frontline by the summer. All C.II aircraft after this point would be of the C.IIa model. A batch of 19 C.IIa was ordered in April of 1916 and another batch of 36 C.IIa was also ordered, but with the ailerons in the upper wing. All aircraft after this would have the ailerons this configuration. A batch of 40 C.IIas was ordered in June of 1916 and would have a larger vertical fin to improve stability.

Production C.II [Roland Aircraft of WWI]
Most of the production Roland C.IIs were flying by the mid summer of 1916. The C.II was used extensively at the Battle of the Somme, where it was used in large numbers for recon and escort duties. On the second day of the Battle of the Somme, June 2nd, the soon-to-be-famous Albert Ball would go on a sortie in a Nieuport scout aircraft. While flying, his squadron would encounter 6 Roland C.IIs on patrol. The Allied squadron would begin their attack, while the Roland formation scattered. Ball was able to catch up to one and shoot it down, causing the C.II to plummet near the Mercatel-Arras road. This would be the first aircraft Ball completely destroyed in flight (There were several confirmed victories before this, but this was the first confirmed complete destruction of an aircraft). Many of Ball’s early kills were Roland C.IIs. Ball himself went on to compliment the C.II, stating it was the best aircraft the German’s had at the time, with a good defense to compliment its speed.

A C.IIa in two tone colors. This particular aircraft has been decorated by its crew, including painted on curtains over the celluloid covers and a shark mouth. [Roland Aircraft of WWI]
The Roland C.II was continually used through the rest of 1916. By summer, the Linke-Hofman company would begin license building C.IIs. An initial batch of 16 aircraft was ordered. The aircraft built under license were known as C.IIa(Li). In July of 1916, a batch of 40 aircraft was ordered to be produced by Linke-Hofman. This would be the last batch of C.IIs built and would be sent to the front in the beginning of 1917. By this time, however, the C.II had lost its performance edge. The Allies had fielded newer and improved aircraft that were able to easily keep up with the C.II, and the Germans had also produced newer aircraft that performed better. The C.II was instead returned from the front lines and used as a trainer for the C-type in flight schools. The C.II would perform this duty until hostilities ended in 1918. The fate of the remaining C.IIs is unknown, but they were most likely scrapped. No aircraft survive to this day.

The Roland C.III: A Derivative Design

The Roland C.III. It is apparent its design is based off of the C.II. Very little is known about this aircraft. [Roland Aircraft of WWI]
In mid-1916, a derivative design of the C.II emerged; the Roland C.III. The C.III shared many of the same design features of the C.II, such as a two-seat aerodynamic body with two windows on each side for observation purposes. However, most of the similarities stop there. The C.III was designed to use the more powerful 200 hp (149 kW) Mercedes D.IV engine over the C.II’s D.III. Based on the few pictures available, the prototype C.III appears to still use a D.III engine, most likely to test the airframe before the larger engine was placed. To compensate for a stronger engine, the wings of the C.II were made larger. The wings themselves were also reworked. Instead of having single bay wings with flat strut connectors, like the C.II, the C.III instead had the standard two bay wings typical of aircraft of the era. This was most likely done as the single struts of the C.II happened to obscure the vision of the frontal windows. The tail design of the C.III also differed from the C.II. Very little is known of the C.III outside of these few details, including whether or not it even flew or any further testing. The single C.III prototype was lost when LFG’s facility in Adlershof was destroyed in a fire on September 6th, 1916. This incident is cited to be caused by sabotage from British Special Forces. After the loss of the prototype, no further work on this type was done.

Conclusion

A lineup of several early C.IIs [Roland Aircraft of WWI]
At the time of its introduction, the C.II was one of the most advanced aircraft Germany had. Its powerful engine and aerodynamic construction allowed it to outperform most of its opposition. As the war continued, more advanced machines eventually outpaced the Roland C.II. The aircraft did manage to influence other companies to attempt more aerodynamic designs. Roland would continue building planes, including newer C-types (C.V and C.VIII) and fighter types, both of which would use Wickelrumpf. Two other aircraft were built off of the C.II’s design, the D.I fighter and the WD floatplane. Despite continuing to make newer aircraft, none of Roland’s designs would ever garner the same fame as their “Walfisch”, and it would remain their most iconic design of the war.

Variants

  • LFG Roland C.II Prototype – The prototype model of the C.II differed from the production version in several ways. Notably, it only had one set of windows. Two of these were built.
  • LFG Roland C.II – Standard model for the Roland C.II. After the initial batch, all aircraft would use a synchronized machine-gun in the nose.
  • Otto Czernak’s LFG Roland C.II – A modified early production C.II used by Otto Czernak of Schusta 28. It had a makeshift machine-gun mount and a unique input system for the observer to request movements from the pilot.
  • LFG Roland C.IIa – Later modified model of the C.II, had improved wings and a larger tailfin.
  • LFG Roland C.IIa(Li) – Designation given to C.IIa planes license-built by Linke-Hofman.
  • LFG Roland C.III – Derivative aircraft based on the C.II. Heavily reworked the wings and was given a Benz B.IV engine.

Operators

  • German Empire – The Roland C.II served as a reconnaissance aircraft and an escort aircraft in several squadrons of the Luftstreitkräfte from 1916 to 1918

LFG Roland C.II Specifications

Wingspan 33 ft 10 in / 10.33 m
Length 25 ft 3 in / 7.7 m
Height 9 ft 6 in / 2.9 m
Mean Aerodynamic Chord 4 ft 11 in / 1.5 m
Wing Area 91.7 ft² / 27.96 m²
Engine 160 hp (119.3 kW) Mercedes D.III 6-cylinder inline engine
Propeller 2-blade Wooden Propeller 
Weights
Empty 1739.5 lb / 789 kg
Loaded 2885.9 lb / 1309 kg
Climb Rate
Time to 3280 ft / 1000 m 7 minutes
Time to 6560 ft / 2000 m 14 minutes
Time to 9840 ft / 3000 m 26 minutes
Maximum Speed 103 mph / 165 km/h 
Flight Duration 4-5 hours (Varies on fuel load)
Crew 1 pilot

1 gunner

Armament
  • 1x Forward facing Spandau 7.92mm machine-gun
  • 1x Rear mounted Parabellum 7.92mm machine-gun
  • Multiple Bomb Racks (Not Standard)

Gallery

Illustrations by Ed Jackson

Roland C.II Prototype
Roland C.II Schusta 28 – Lt. Otto Czermack
Note the forward firing Lewis Gun mounted high to clear the propeller arc.
Roland C.II – Black Stripes over Pre-Production Paint
Roland C.II featuring a Shark Mouth
Roland C.IIa – Note the Larger Rudder
Roland C.III Prototype

Credits

  • Article written by Medicman
  • Edited by Stan Lucian & Ed Jackson
  • Illustrations by Ed Jackson
  • Herris, Jack. Roland Aircraft of WWI : a centennial perspective on Great War Airplanes. Charleston, SC: Aeronaut Books, 2014. Print.
  • Gray, Peter L., and Owen Thetford. German aircraft of the First World War. London: Putnam, 1970. Print.

PB.29E & PB.31E Supermarine Nighthawk

UK Union Jack United Kingdom (1915 & 1917)
Anti-Airship Fighter – 1 Each Built

Supermarine PB.31E Nighthawk

In 1915, Germany began bombing Great Britain by Zeppelin. For the first time, Britain itself was under threat by enemy aircraft. Early attempts to counter the Zeppelins were ineffective. The Royal Air Corps needed an aircraft to be able to endure long, nighttime missions to chase the Zeppelins. The Pemberton-Billing aircraft company designed the PB.29E quadruplane for this task. The aircraft didn’t perform as hoped, but before a final conclusion could be made it was lost in a crash. Years later in 1917, with the company under new management and renamed Supermarine, the program would rise again as the PB.31E.  The PB.31E was dubbed the Nighthawk, and like its predecessor, proved to be ineffective in the role. The fighter is significant for its unusually large quadruplane layout and the first aircraft to be built by Supermarine.

History

The arrival of the Zeppelin in 1915 as a new type of weapon was an unwelcome one. It offered a new way of strategic bombing, as Zeppelins were faster and able to ascend higher than aircraft at the time. Zeppelins also served as a weapon of terror, as the civilians of England had never been faced with anything like it before, especially since the Zeppelins attacked mainly at night. Early attempts to counter Zeppelin raids proved ineffective, as anti-aircraft guns had a hard time spotting and aiming at the Zeppelins. Early forms of countermeasures involved aircraft dropping flares to illuminate the Zeppelins for gunners to see. None of these aircraft were used to actually intercept the airships. The Royal Air Corps needed an aircraft that would be able to reach and pursue Zeppelins on the homefront and on the battlefield. A potential solution came from a man named Noel Pemberton Billing.

Noel Pemberton Billing (1881-1948)

Noel Pemberton Billing was a man of many talents. He was an inventor, aviator, and at one point a member of Parliament. At the time, he was invested in many forms of new technology and aircraft was one of them. Having formed his own aircraft company in 1913, he built several aircraft types for the Royal Naval Air Arm (RNAA), such as the PB.25. He had taken a short break from designing planes for the RNAA and wanted to pursue aircraft to help in the war effort. The task of taking on Zeppelins got him interested in designing a plane to fill the role.

His answer was the PB.29E, a quadruplane aircraft. Information regarding the PB.29E is sparse and no specifications can be found for it. To get the aircraft to the altitudes at which Zeppelins usually lurked, Pemberton Billing applied triplane principles in making the aircraft, except taking it a step further and adding an extra wing. Having more wings, in theory, would assist with lift, a necessary factor when trying to chase the high-flying Zeppelins. Work began in late 1915, with the aircraft being finished before winter. The PB.29E was intended to fly for very long missions and needed to operate at night. To assist in spotting the behemoths, a small searchlight was to be mounted in the nose of the aircraft. The sole PB.29E crashed in early 1916. From test flights, the aircraft proved to be cumbersome and would not have been able to pursue Zeppelins. The two Austro-Daimler engines did not prove to be sufficient for the intended role, and performance suffered from it.

German Navy – R Class Zeppelin L 31

On September 20th, 1916, Noel Pemberton Billing sold his company to Hubert Scott Paine so he could become a member of Parliament. His career in Parliament was full of slander and conspiracy, and ultimately negatively affected the war effort. Soon after being acquired, Paine renamed the company as the soon to be famous Supermarine Aviation Works, in honor of the firm’s telegraph address. Work continued on a Zeppelin interceptor, which would eventually become the PB.31E. The PB.31E was technically the first aircraft built by Supermarine and it resembled a larger and more advanced version of the PB.29E. It retained many aspects from its predecessor: the quadruplane layout, the mounted searchlight, and endurance for long nighttime missions. The armament was expanded with a second Lewis gun mounted in the rear cockpit as well as a Davis gun mounted on top of the cockpit above the wings. To make the crew more comfortable, the cockpit was fully enclosed, heated, and had a bunk for crewmembers. The Austro-Daimler engines were replaced by 100hp Anzani radial engines. Expected speed was 75 mph (121 km/h) and it was to operate up to 18 hours.

The design team poses in front of the newly completed Nighthawk, fourth from the left is R.J Mitchell.

The aircraft was constructed in February of 1917, with a second in the works. On board the project was R.J Mitchell, the future designer of the Supermarine Spitfire. He began as a drafstman for the company and several designs concerning the fuselage and gun mounts of the PB.31E are labeled with his name. To the engineers, the aircraft was dubbed the Supermarine Nighthawk, however, this name was never official. Early flights were conducted at the Eastchurch airfield by test pilot Clifford B. Prodger. Tests showed that, like its predecessor, the engines weren’t capable of propelling the aircraft to its desired level of performance. To reach altitudes most Zeppelins were found at took an hour. Not to mention, newer Zeppelins could go even higher. Its expected 75 mph (121 km/h) top speed was never reached, with the aircraft only going 60 mph (96 km/h). However, it had a safe 35 mph (56 km/h) landing speed, which would have given the aircraft easy landing capability. With the performance lacking, the RAC deemed the project to be a dead end.

With the introduction of new incendiary rounds which easily ignited Zeppelins, Britain could defend itself with the improved AA guns. Along with the new rounds, the RAC started using the Royal Aircraft Factory B.E.2 to intercept Zeppelins at night. Originally intended for dogfighting, the B.E.2 proved to be ineffective and slow against fighters, but Zeppelins were easier, and much larger targets. With the Nighthawk now not needed, Supermarine ended up scrapping the first and incomplete second prototypes in 1917. Although the Nighthawk would never have been successful had it entered production, it still represents major innovations in aircraft design. It was one of the first true night-fighting aircraft to be designed, a concept later heavily utilized in the Second World War. The honor of being the first aircraft built by Supermarine under their name also goes to the Nighthawk.

Design

Overhead and side schematic views of the PB.29E

The PB.29E was a quadruplane designed to chase and intercept Zeppelins. Its fuselage was mounted between the lower two wings, with a gunner port being mounted in the upper two wings, leaving an opening in the middle between the two. Two crewmembers occupied the central fuselage with a single gunner gunner position in a seperate section above. The cockpit was open to the elements, as well as the gunner port. For armament, a single Lewis gun was mounted for attacking Zeppelins. For engines, the PB.29E had two Austro-Daimler six-cylinder engines in a pusher configuration. The tail itself was doubled.

Schematics for the Nighthawk with R.J Mitchell’s initials.

The PB.31E was a quadruplane like the PB.29E, but it was larger utilized a different fuselage design. Instead of having the fuselage between the lower two wings, the PB.31E positioned its body between the middle two wings. The body itself was of all wooden construction. To reduce splinters if the aircraft was fired upon or in the event of a crash, the fuselage was taped and covered in heavy fabric. To make the long missions more comfortable the cockpit was heated and completely enclosed by glass. A bunk was added for one crew member to rest during the flights as well, as the expected flights could last up to 18 hours. A searchlight mounted protruding from the center of the nose for use in patrols at night. The searchlight was movable to allow pointing it at different targets. It was powered by an onboard dynamo hooked up to a 5hp A.B.C petrol engine. For fuel storage, the PB.31E had 9 individual petrol tanks located around the cockpit area. The tanks were built to be interchanged if they were damaged or empty. In the front of the aircraft were several slits behind the searchlight that would assist in cooling. The wings of the PB.31E had significant cord to them. The tailplane was doubled like on the PB.29E, and the tail itself was lower to allow the rear mounted Lewis gun more range

The newly completed PB.29E, the gunner position between the two topmost wings is easily visible

of fire. For engines, the PB.31E had two Anzani radial engines in tractor configuration. These engines gave the PB.31E its slow speed of 60 mph (96 km/h), and its hour-long ascent to 10,000 ft (3000 m). The fluid lines, controls and other parts connected to the engines were placed outside the fuselage in armored casings. For armament, the PB.31E carried a frontal Lewis gun, a top mounted Davis recoilless gun and a rear Lewis gun. The Davis gun was built on a mount that allowed an easy range of motion in most directions. Lewis gun ammo was stored in six double cartridges and 10 Davis gun rounds were stored onboard as well.  Also on board were an unknown amount of incendiary flares to be dropped should a Zeppelin be directly below the craft.

Variants

  • 29E– First aircraft built for the Anti-Zeppelin role. Armed with a single Lewis gun. Crashed during testing.
  • 31E– Second aircraft. One prototype and one unfinished plane. Resembled a larger version of the PB.29E. Carried a Davis gun and two Lewis guns. Scrapped once the design was deemed unworthy.

Operators

  • Great Britain – The two prototypes were built and tested in England.

Supermarine PB.31E Nighthawk Specifications

Wingspan 70 ft / 18.29 m
Length 36 ft 11 in / 11.24 m
Height 37 ft 9 in / 5.4 m
Wing Area 962 ft² / 89 m²
Engine 2x 100 hp ( 76kW ) Anzani Radial Engines
Weights  

Empty 3677 lbs / 1667 kg
Loaded 6146 lbs / 2788 kg
Climb Rate  

Time to 10,000 ft / 3047 m 60 minutes
Maximum Speed 75 mph / 121 km/h
Cruising Speed 60 mph / 96 km/h
Landing Speed 35 mph/ 56 km/h
Flight Time Up to 18 hours of continuous flight
Crew 3-5 Crew

1 Pilot

2-4 Gunners

Armament ●      2x 7.7mm Lewis Guns

●      1x 1 ½ Pounder Davis Gun (10 rounds)

●      1x Frontally-mounted Searchlight

●      Unknown amount of incendiary flares

 

Gallery

Side profiles by Ed Jackson – www.artbyedo.com

Pemberton-Billing PB.29E
Supermarine PB.31 Nighthawk
The PB.29E under construction in Woolston
A frontal view of the PB.29E, note the searchlight
The newly constructed Nighthawk sits in a hangar at Woolston
The Nighthawk on the runway, notice the weapons and spotlight are absent

Sources

 

 

Albatros D.III

German Empire Flag German Empire (1916)
Fighter Plane – 1,866 Built
The Albatros D.III was a bi-plane fighter manufactured by Albatros Flugzeugwerke Company in the Aldershof district of Berlin, Germany. The plane helped secure German air superiority and several top German aces flew the D.III, including Manfred von Richthofen – The Red Baron.  It was armed with 2 7.92mm LMG 08/16 machine guns which were an air cooled and synchronized version of Germany’s MG08.

Design of the D.III

Designed by Robert Thelen, the D.III was based off of the D.I and D.II that preceded it, utilizing the same basic fuselage.   This fuselage design was semi-monocoque, meaning that the skin of the aircraft, which was plywood, could bear some weight and add structural rigidity.

Albatros D.III - The Red BaronAfter seeing the success of the French Nieuport 11 and 17, the Idflieg which was the bureau overseeing German aviation development at the time requested that the new D.III adopt a sesquiplane layout similar to the Nieuports. A sesquiplane configuration consists of a modified biplane design with shorter and and narrower lower wings with the advantage being less drag at speed. As a result, the top wing was lengthened, and the lower wing’s chord was shortened, meaning the wing measured less from leading edge to trailing edge. The bracing, between the top and bottom wings was reconfigured to a “V” shape leading owing to the single spar used in the lower wings. Because of this the British coined their own nickname for the D.III: “The V-strutter.”

Water Cooled Mercedes Power

The D.III utilized a water-cooled Mercedes inline 6 cylinder 4 stroke engine appropriately designated as the D.IIIa. The water cooling and overhead camshaft yielded more horsepower than the radial engines that were more common, with the D.IIIa pumping out 170 hp. In the interest of weight savings the crankcase was aluminum, whilst the separate cylinders were steel and bolted onto the crankcase. Unlike previous designs each cylinder had a separate water jacket.

Flaws Emerge

Several problems were discovered during the D.III’s introduction. The first of which was the placement of the aerofoil shaped radiator above the cockpit. Although it was well placed to avoid battle damage, it tended to scald the pilot if there was a leak or puncture in the radiator for any reason. The design was changed to relocate the radiator right of the cockpit.

Albatros D.III - Wrecked at FlandersAnother issue had to do with several lower wing failures. Even The Red Baron himself, Manfred von Richthofen experienced this with a crack appearing on his new D.III and was forced to make an emergency landing.  Initially this puzzled engineers and was attributed to poor workmanship during manufacturing, but in reality the lower wing was experiencing excessive flexing under aerodynamic load. The eventual cause was determined to be the wing’s spar which was located too far aft. As a result of the changeover to the sesquiplane layout, only a single spar was used in the lower wing. Modifications were made to the design and existing aircraft to strengthen the wing. In spite of the modification pilots were advised to avoid steep or prolonged dive maneuvers.

Performance

The D.III was well regarded among pilots from its introduction despite having heavier controls. It offered improved stability, maneuverability, and climbing ability over the preceding D.II. Downward visibility was also much improved thanks to the narrower lower wing.

Bloody April

Albatros DIII - Climbing

The Albatros D.III was the most dominant fighter in the air during April 1917. The British forces attacking at Arras, France pushed for strong air support in the battle, but were their pilots were not nearly as well trained as the German pilots. To make matter worse, the British planes in use such as the Sopwith Pup, Nieuport 17, and Airco DH.2 were vastly inferior to the D series aircraft in use by the Germans. The British would go on to lose 275 aircraft. By contrast the Germans only lost 66 aircraft during the conflict.

Albatros D.III Specifications

Wingspan  9 m / 29 ft 6 in
Length  7.33 m / 24 ft 1 in
Height  2.9 m / 9 ft 6 in
Wing Area 23.6 m² / 254 ft²
Engine 1 water cooled inline Mercedes D.IIIa engine
Maximum Take-Off Weight 886 kg / 1,949 lb
Empty Weight 659 kg / 1,532 lb
Maximum Speed 175 km/h / 109 mph
Range 480 km / 300 mi
Maximum Service Ceiling 5,500 m / 18,000 ft
Crew 1 (pilot)
Armament 2 x 7.92 mm LMG 08/15 machine guns

Gallery

Sources

Albatros D.III. (2016, March 1). In Wikipedia, The Free Encyclopedia., Avistar.org (n.d.) Albatros D.III Images: Albatros D.III – Flying by DeciBit, Albatros D.III – Side View by Serge Desmet / CC BY-SA 1.0

Sopwith Camel B3889 - Side Profile View

Sopwith Camel

british flag Great Britain (1917)
Fighter Plane – 5,490 Built
The legendary Sopwith Camel was the successor to the earlier Pup. The Camel utilized a biplane design and twin synchronized Vickers machine guns. It first flew in late 1916 as the British continued to develop faster and more powerful fighters to keep pace with  German advances in aeroplane design. The Camel was deemed far more difficult to fly than the preceding Pup and Triplane, but despite this would go on to shoot down more German aircraft than any other Allied plane.

Development

After combat losses, it became apparent that the Pup and Triplane were no longer competitive against the German Albatross D.III.  Sopwith Chief Designer Harry Smith recognized the need for a new fighter to be developed. While being designed, the Camel was referred to as the F.1 or the “Big Pup.”

Sopwith Camel - Front ViewAs was standard at the time, the airframe was a wood boxlike structure, with aluminum cowlings around the nose and engine area. Metal wire rigging was used throughout the construction to enhance fuselage and flight surface rigidity. A conventional fabric covered body and plywood cockpit area ensured weight savings were maximized. The nickname of “Camel” came from a “hump” shaped metal fairing that covered the machine guns in order to prevent freezing at altitude. The F.1 was also sometimes referred to as the “Sop,” short for Sopwith. The lower wings featured a dihedral of 3 degrees, meaning the wings are angled upwards and are not perpendicular to the fuselage. However to simplify construction the top wing was flat, giving the plane a unique “tapered gap” between the upper and lower wings. Also the top wing features a cutout section above the cockpit for pilot visibility.

The Camel

After its introduction in June 1917, the Camel became notorious for being difficult to fly. Rookie pilots crashed many times upon takeoff. Part of the reason was the fact that the center of gravity of the plane was very close to the nose owing to the plane’s sizeable powerplant relative to the size of the airframe.  However the fact that 90% of the weight of the aircraft was in the front third of the aircraft gave it great maneuverability, with the weight of the engine, pilot, and armaments centered within the wing root section of the fuselage.

Sopwith Camel Replica - ParkedThe Camel lacked the variable incidence tailplane and trimming that had enabled the Triplane to fly “hands off” at altitude. This meant that a pilot would have to constantly apply pressure to the control stick to maintain level flight at low altitude or speed. Great physical strength and endurance was required to fly the Camel at length.

The Camel had a rotary engine, not to be confused with a radial engine or a rotary wankel. With a rotary engine, the entire engine and crankcase spins relative to the fuselage, with the propeller directly connected to the crankcase. Thus engine speeds in RPM exactly the match the RPM of the propeller. The torque of the relatively powerful rotary engine combined with the weight distribution of the aircraft led to a constant “pull” to the right, a phenomenon common to rotary engines.  Although not necessarily a desired feature, pilots used this to their advantage for turning in dogfights. However, in the event of a stall the Camel would go into a dangerous spin.

The difficulty of flying the aircraft is obvious from the fact that about half of all Camels lost during the Great War were due to non-combat related incidents.  Early on there were many pilot casualties on their first solo fights after training, so a two-seat, dual control version was developed to mitigate the dangers of training on the aircraft.

The Numbers

A staggering 5,490 Camels were produced. Most were deployed to the Western Front. After the war they did not see much use in service. Remarkably only 7 are known to exist as of 2016, however there are many flying replicas of the aircraft.

The Camel is credited with downing 1,294 German aircraft, more than any other Allied plane. Among the plane’s kills is the famed German ace Rittmeister Manfred von Richthofen also known as the “Red Baron.”

Power

The Camel was powered by a variety of rotary engines and by design was able to be fitted with engines from other manufacturers such as Bentley. The primary engine used was the 130 HP Clerget 9B, a French design produced in France and Great Britain which also saw service in the Pup and Triplane.

The most powerful engine available was the Bentley BR1 which produced 150 HP thanks to its aluminum cylinders and pistons as well as a dual spark ignition. It was also significantly cheaper than the Clerget.

Sopwith Camel Specifications

Wingspan  8.5 m / 28 ft 11 in
Length  5.7 m / 19 ft 8 in
Height  2.6 m / 9 ft 6 in
Wing Area 21.5 m² / 231.42 ft²
Engine 1 air-cooled Clerget 9B 110 HP or 130 HP
Maximum Take-Off Weight 659 Kg / 1.453 lb
Empty Weight 422 kg / 930 lb
Maximum Speed 185 km/h / 115 mph
Range 350km / 217 mi
Maximum Service Ceiling 5,790 m / 19,000 ft
Crew 1 (pilot)
Armament 2 synchronized 7.7mm Vickers machine guns
4 20lb Cooper bombs

Gallery

Sopwith Camel B6313 - March 1918
Sopwith Camel B6313 – March 1918
Sopwith Camel B6313 - 6-1918 '3 Stripe' - Side Profile View
Sopwith Camel B6313 – June 1918 – ‘3 Stripe’
Sopwith Camel B6299 - B Flight, 10 Naval Squadron RNAS
Sopwith Camel B6299 – B Flight, 10 Naval Squadron RNAS
Sopwith Camel B6390 'Black Maria' - Raymond Collishaw
Sopwith Camel B6390 ‘Black Maria’ – Raymond Collishaw
Sopwith Camel B6313 - October 1918 - '6-Stripe'
Sopwith Camel B6313 – October 1918 – ‘6-Stripe’
Sopwith Camel B6313 - Oct 1917 Side Profile View
Sopwith Camel B6313 – October 1917
Sopwith Camel B3889 - Side Profile View
Sopwith Camel B3889 – July 1917
Sopwith Camel F6034 - Side Profile View
Sopwith Camel F6034 – September 1918
Sopwith Camel B6344 - October 1917
Sopwith Camel B6344 – October 1917

Sources

Sopwith Camel. (2016, April 1). In Wikipedia, The Free Encyclopedia, Avistar.org (n.d.) Sopwith Camel 1917, Sherman, S. (2012). Sopwith Camel, Franks, N. (2001). American aces of World War I. Oxford: Osprey Aviation. Images: Sopwith Camel – Front View Lineart by Voytek S / CC BY-SA 1.0, Sopwith Camel – Replica in Flight by D. Miller / CC BY 2.0, Sopwith Camel – Replica Structure by TSRL / CC BY-SA 3.0